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1 Preface 
 

A composite is a material which is produced by two or more different constituent materi-
als. Composites play a vital role in material sciences, product development and any kind 
of engineering, but also in daily life. Fig. 1.1 provides an overview about composites from 
the point of view of material sciences. Fig. 1.2 illustrates some significant geometric and 
spatial characterzistics of composites influencing the material behaviour on the basis of 
fibres embedded in a matrix. 
  

 

Fig. 1.1 Classification of composites (Callister & Rethwisch, 2009) 

 

 

Fig. 1.2 Geometrical and spatial characteristics for particle and fibre reinforced composites: (a) concentra-

tion, (b) size, (c) shape, (d) distribution, (e) orientation (Callister & Rethwisch, 2009) 
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Typical applications of composites in geo-engineering are: 
 

▪ Steel- or fibre-reinforced concrete or shotcrete 
▪ Several layers of lining or support 
▪ Masonry constructions 
▪ Geotextile reinforced earth 
▪ Bedding or schistosity  

 
In addition, also the geological layering can be consideres as a large-scale composite; 
and at the micro-scale any type of rock is a composite in terms of pores and matrix as 
well as several minerals. 
 
The behaviour of composites in general is quite complex and therefore nowadays numer-

ical simulation techniques are used for predict or analyse the behaviour of such materials. 

There are a few key questions in respect to the behaviour of composites in geo-engineer-

ing, for instance: 

▪ How is the distribution of stress and strain in the diferent constituent materials un-

der loading ? 

▪ How is the overall stiffness and deformability of a composite as a whole ? 

▪ How is the behaviour (incl. strength, failure etc.) at the interface between several 

constituent materials ? 

This e-book chapter describes only the basic mixture rules for composites considering 

pure elastic behaviour and some practical applications.  
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2 Basic mathematical mixture rules 

There are 6 different basic mixture rules in mathematics important for composites: 
 

▪ Arithmetic mean 
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▪ Weighted arithmetic mean 
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Where φ is the weighting factor 

 
 

▪ Harmonic mean 
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▪ Weigthed harmonic mean 
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▪ Geometrical mean 
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▪ Weighted geometrical mean 
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It holds in general:  xA ≥ xG ≥ xH. 
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3 Basic mixture rules for composites 

There are tow basic mixture rules for composites: 
 

▪ Voigt mixture rule 
▪ Reuss mixture rule 

 
They consider only two elastic components represented by two springs (see Fig. 3.1 and 
3.2). The Reuss model considers two springs A and B in series which experience the 
same stress (isostress mixing rule). The Voigt model considers two springs A and B in 
parallel which experience the same strain (isostrain mixing rule).   
 
 

 
 
 
 
 

Fig. 3.1 Reuss mixture model 

 

 
 
 
 
                   
 
 
 

Fig. 3.2: Voigt mixture model 

 
 

 
 
 
 
 
                   
 
 
 
 
 
 
 
 
 
 

Fig. 3.3: Hybridized Voigt-Reuss mixture model 

B 

A 

A B 

B 

A 

A B 



Composites for geotechnical engineers – an introduction 
 

Only for private and internal use!   Updated: 08 October 2024  

Page 6 of 18 

 
For the 1-dimensional Reuss model the following yields (always: φA + φB = 1): 
 

total A A B B total A Band       = + = =          (3.1) 

 

Re
A B

uss

A B B A

E E
E

E E 
=

+
               (3.2) 

 
For the 1-dimensional Voigt model the following yields: 
 

total A B total A A B Band       = = = +         (3.3) 

 

Voigt A A B BE E E = +                (3.4) 

 

 
Fig. 3.4: Illustration of Young’s modulus and strength referred to volume fraction φA of material A for Reuss 

and Voigt model (Swan & Kosaka, 1997) 

 
Based in Fig. 3.4 or Eq. 3.2 and 3.4 it becomes obvious, that the Reuss and Voigt models 
provide the lower and upper bounds for the Young’s modulus of a composite: 
 

Reuss Composite VoigtE E E                 (3.5) 

 
It also follows that: 
 

max( , )Composite A BE E E                (3.6) 

 
Fig. 3.4 documents also the strength behavior for the assumption of brittle failure when 
stress in sping A or B reaches the ultimate limit strength. The Voigt model shows a linear 
relation, but the Reuss model has only two values due to the fact that the springs act in 
series and the weakest of the two elements determines the failure (weakest link theory).  
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For the hybridzed Voigt-Reuss model the following holds: 
 

Re Re(1 )total Voigt uss total Voigt ussand      = = = + −       (3.7) 

 

Re(1 )HVR Voigt ussE E E = + −               (3.8) 

 
Where the volume fraction of the total mixture in the Voigt part is α and that in the Reuss 
part is (1- α). Fig. 3.5 illustrates the behaviour in comparion to the Voigt and Reuss mod-
els. 
 

 
Fig. 3.5: Illustration of Young’s modulus and strength referred to volume fraction φA of material A for Reuss 

and Voigt model as well as hybridized Voigt-Reuss model (Swan & Kosaka, 1997) 

 

 

Based on the above discussion (Reuss and Voigt rules are upper and lower bounds) the 
so-called Voigt-Reuss-Hill average (VRH) is defined for the bulk moduls KVHR and shear 
moduls GVHR: 

 

𝐾𝑉𝑅𝐻 =
𝐾𝑉+𝐾𝑅

2
              (3.9) 

 
 

𝐺𝑉𝑅𝐻 =
𝐺𝑉+𝐺𝑅

2
              (3.10) 

 
The so-called Hashin-Shtrinkman bounds provide upper and lower bounds for composite 
moduli for a material that macroscopically can be consired as isotropic (see Eq. 3.11 and 
3.12). Upper and lower bounds are obtained by changing weighting factors (portions) φ1 
and φ2. Numerical simulations confirm this behaviour as documented by Fig. 3.6. 
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Fig. 3.6: Effective elastic moduli, comparsion between different analytical models and numerical simulations 

(Pothana et al., 2024) 
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4 Mixture rules under consideration of Possion’s ratio 

The consideration of Poisson’s ratio   can have significant impact on the behaviour of 

composits, see for instance: Liu et al. (2009) or Zhu et al. (2015). Note: by choosing 
special combinations of Poisson’s ratio the obtained Young’s modulus can be above the 
Voigt limit, however, it cannot exceed the modulus of the stiffest phase. 
 
Liu et al. (2009) have derived analytical solutions for some special configuration. As 
shown in Fig. 4.1 a composite is compressed perpendicular to the layers A and B. The 
analytical solution for the resulting overall Young’s modulus EZ (z-direction) is: 
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Fig. 4.1: Composite model constellation considering Poisson’s ratio (Zhu et al., 2015) 

 

As shown in Fig. 4.2 a composite is pulled parallel to the layers A and B. The analytical 
solution for the resulting overall Young’s modulus Ex (x-direction) is: 
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Fig. 4.2: Composite model constellation considering Poisson’s ratio (Zhu et al., 2015) 
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5 Halpin-Tsai equation 

In case the elements A and B act neither excact parallel or in series the empirical so-
called Halpin-Tsai equation can be applied to estimate the overall Young’s modulus: 
 

( )A B B B A A

HT

B A A B A

E E E E
E

E E E

  

  

 + + =
+ +

             (5.1) 

 
Where ξ is an adjustable parameter that results in series for ξ=0 and parallel averaging 
for very large values of ξ. 
 

6   Average density 

The overall density ρtotal of a composite can be calculated by using weighted arithmetic 
mean: 
 

1

n

total i i

i
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=

=                  (6.1) 

 
Where φi represent the volume contents of the different components. 
 
 

7   Fibre reinforced materials 

Fibre reinforced concrete is a widely used material in civil and geotechnical engineering. 
The fibres are randomly distributed inside the matrix. Therefore, a simple approximation 
is to consider only the volume to weight ratio between fibres and matrix as weighting 
function. 
 

1 1m m
m m m f m f

c c

V m
vf and mf with vf vf and mf mf

V m
= = = − = −     (7.1) 

 
Where vfm = matrix volume fraction, mfm = matrix mass fraction, m = mass, v = volume 
and indices c = composite, m = matrix, f = fibre. 
 
The density ρ of a fibre reinforced material can be determined according to thes equa-
tions: 
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Depending on the properties several constellations can be considered. Let us first con-
sider, that fibre and matrix have the same failure strain and brittle failure (see Fig. 7.1). 
The corresponding failure stresses are σmu (for matrix) and σfu (for fibres).  
 

 
 
Fig. 7.1: Composite with brittle matrix and fibre as well as same failure strain (NKMe, 2021) 

 
The failure stress of the composite σc can be calculated according to following equation: 
 

( )c mu fu mu fvf   = + −                (7.3) 

 
Let us now assume brittle fibres in a ductile matrix like illustrated in Fig. 7.2.  
 

 
  
Fig. 7.2: Composite with brittle fibre and ductile matrix (NKMe, 2021) 
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The reduction in strength from σmu until reaching vff (Vmin) describes the situation 

where fibres break and only the remaing matrix volume can take load: 

(1 )c mu fvf = −                  (7.4) 

Beyond vmin the failure envelope of the composite becomes increasing: 

(1 )I

c fu f m fvf vf  = + −                (7.5) 

Where σI
m is the stress assuming failure strain εf of fibres multiplied with Young’s modu-

lus of pure concrete Em. 

I

m m fE =                   (7.6) 

The portion of fibres which leads to the minimum strength of the composite (lower than 

the strength of the matrix alone) is given by the following equation: 

,min

I

mu m
f I

fu mu m

vf
 
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−
=

+ −
               (7.7) 

Another interesting point is reached at vcrit, which determines the minimum amout of fi-

bres necessary to exceed the strength of the pure matrix: 

,

I

mu m
f crit I

fu m

vf
 

 

−
=

−
                (7.8) 

Let us finally consider ductile fibres imbedded in a brittle matrix, typical for steel rein-

forced concrete (see Fig. 7.3). 

 

Fig. 7.3: Composite with brittle matrix and ductile fibre (NKMe, 2021) 
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In case the matrix fails before the fibres, the fibre stress is the following: 

I I

f f mE =                   (7.9) 

With low proportions of fibres the composite fails when matrix fails and composite 

strength is given by: 

(1 )I

c f f mu fvf vf  = + −                (7.10) 

With high proportions of fibres the matrix can fail completely, but matrix fragments will 

be kept in place by fibres and composite strength is given by: 

c fu fvf =                   (7.11) 

The transition from matrix to fibre dominating failure is given by the following expres-

sion: 

,
mu

f trans I

fu mu f

vf

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=

+ −
               (7.12) 

 

Lee and Wang (1998) have proposed a degradation parameter P to take into account 

deviations from an ideal composite (non-homogeneous fibre spread and partial lack of 

matrix material between some adjacent fibres) to determine the tensile strength: 

(1 ) (1 )c f f m fvf P vf  = − + −               (7.13) 
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8   Simple examples 

 Characteristics of a layered roof 

Fig. 8.1.1 shows a layered roof which consists of 3 layers characterized by corresponding 
Young’s moduli E and thicknesses h. Task: Determine the overall Young’s modulus par-
allel and perpendicular to the layering. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1.1: Layered roof 

 

 

The following values are given: 
 
E1 = 35 GPa    h1 = 2 m 
E2 = 15 GPa    h2 = 1 m 
E3 = 50 GPa    h3 = 5 m 
 

31 2
1 2 3

8 8 8
perpendicular

hh h
E E E E

m m m
= + +  = 41.9 GPa 

31 2

1 2 3

1

8 8 8

parallelE
hh h

E E E

=

+ +

= 35.8 GPa 

 
 

 Characterstics of a composite support element 

A vertical support element consists of two material with different stiffness E und different 
thickness h. Task: determine the stresses inside the two components of the support and 
the deformation of the support element. 
 
 
 
 
 
 

E1, h1 

E2, h2 

E3, h3 
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Fig. 7.2.1: Composite support element under vertical pressure 

 
 
The following values are given: 
 
E1 = 55 GPa    h1 = 0.2 m 
E2 = 35 GPa    h2 = 0.5 m 
σ = 5 MPa 
 

1 2

0.2 0.5

0.7 0.7
E E


 =

+

 = 1.23e-4 

 

1 1E =  = 6.8 MPa 

 

2 2E = = 4.3 MPa 

 
The overall Young’s modulus corresponds to the Voigt model (weighted arithmetic mean): 
 

sup 1 2

0.2 0.5

0.7 0.7
portE E E= +  = 40.7 MPa 

 
 

E1 
h1 

E2 
h2 

σ 

σ 
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 Characteristics of fibre reinforced concrete 

For a shotcret of Typ B25 (2.5 MPa tensile strength, 30 GPa Young’s modulus, failure 
strain 0.05%) the tensile strength should be enhanced by a factor of 2 and 5 by using 
steel fibres (Young’s modulus 210 GPa). Task: Determine the amount of steel fibres nec-
essary to reach this goal and calculate the corresponding Young’s modulus and the den-
sity of this composite. 
 
First, according to Eq. 9 and 12, the transition point has to be determined: 
 

210 0.0005I

f GPa = = 10.5 MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

 

 ,

2.5

1000 2.5 10.5
f trans

MPa
vf

MPa MPa MPa
=

+ −
 = 0.0025 = 0.25% 

 
Applying the transition point into Eq. 7.11 yields:  
 

1000 0.0025c MPa = =2.5 MPa 

 
The desired composite strength is 5 or even 12.5 MPa and has therefore to be calculated 
according to Eq. 7.11: 
 

5
0.005 0.5%

1000
mu

f

fu

vf



= = = =        for 5 MPa desired tensile strength 

 

12.5
0.0125 1.25%

1000
mu

f

fu

vf



= = = =  for 12.5 MPa desired tensile strength 

 
To determine the corresponding Young’s modulus the Halpin-Tsai equation would pro-
vide the most accurate value, however because the parameter ξ is unknown, the Reuss 
and Voigt approaches are used to estimate the upper and lower bound for the Young’s 
modulus. 
 
 

Re

30 210

0.005 30 0.995 210
uss

GPa GPa
E

GPa GPa
= =

+
30.13 GPa  for 5 MPa desired strength 

 

Re

30 210

0.0125 30 0.9875 210
uss

GPa GPa
E

GPa GPa
= =

+
30.38 GPa  for 5 MPa desired strength 

 
 
 0.995 30 0.005 210VoigtE GPa GPa= + = 30.90 GPa for 12.5 MPa desired strength 

 
 

0.9875 30 0.0125 210VoigtE GPa GPa= + =32.25 GPa for 12.5 MPa desired strength 



Composites for geotechnical engineers – an introduction 
 

Only for private and internal use!   Updated: 08 October 2024  

Page 17 of 18 

 
 
According to the inequality relation of the Reuss and Voigt models

Reuss Composite VoigtE E E 

it holds for this specific case: 
 
30.13 GPa ≤ EComposite ≤ 30.38 GPa for 5 MPa desired strength 
 
30.90 GPa ≤ EComposite ≤ 32.25 GPa for 12.5 MPa desired strength 
 
The corresponding density of the composites can be calculated according to Eq. 7.2 as-
suming a density for the steel fibres of 8000 kg/m3 and for the concrete of 2000 kg/m3. 
 
ρc = 0.005∙8000 + 0.995∙2000 = 2030 kg/m3  for 5 MPa desired strength 
 
ρc = 0.0125∙8000 + 0.9875∙2000 = 2075 kg/m3  for 5 MPa desired strength 
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