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1. Introduction 

Geomechanical calculations have to consider the following 3 fundamental relations: 

• Equilibrium conditions 

• Compatibility conditions 

• Constitutive laws 

The coupling between the stresses and deformations is performed by the constitutive 
laws (material laws) as indicated by Fig. 1. In order to describe these relations effectively, 
the theory of tensors was developed at the end of the 19th century. During the 20th century, 
the use of tensors has extended beyond continuum mechanics and now includes - among 
others - the fields of special and general theory of relativity, quantum mechanics, fluid 
mechanics and electromagnetism. In the context of geomechanics, we will use second-
order tensors to describe stresses and deformations and fourth-order tensors to describe 
the stiffness matrix. The scheme in Fig. 1 illustrates the interaction of the individual com-
ponents, which are explained in more detail within the next chapters. 
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Fig.1.1: Geomechanical calculation scheme 
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2. Tensors 

2.1 Introduction 

Let’s examine the known vector product in ℝ3. The vector product of two vectors produces 
a third vector 
 𝒛 = 𝒘 × 𝒙,     𝐳 ∈ ℝ3  2.1 

Understood as a function that maps 𝒙 → 𝒛(𝒙), the vector product is linear so that 

 
( ) ( )

( ) ( ) ( )

,  = 

 + =  + 

w x w x

w x y w x w y
  2.2 

We will call such a linear function a tensor, in this specific case a second-order tensor. 
Any linear function in ℝ3 can be described through a multiplication with a matrix, so that 
we can write 

 

 𝒛 = 𝒘 × 𝒙 = 𝑾𝒙,     𝐖 ∈ ℝ3×3 2.3 

In the particular case of the vector product, the matrix which describes the tensor takes 
the following form 

 𝑾 = (
0 −𝑤3 𝑤2
𝑤3 0 −𝑤1
−𝑤2 𝑤1 0

) 2.4 

Another example of a tensor is the rotation of a vector: 

 

 

The rotation of a vector in ℝ2 is a function which maps 𝒙 → 𝒚(𝒙). This function is once 
again linear 

𝒚(𝑚𝒙) = 𝑚𝒚(𝒙) 
𝒚(𝒘 + 𝒙) = 𝒚(𝒘) + 𝒚(𝒙)                 2.5 

This function is therefore again called a (second-order) tensor and the rotation tensor 
can be described by means of matrix multiplication. 
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 𝒚(𝒙) = 𝒀𝒙 2.6 

With the rotation matrix 

 𝒀 = (
𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼
𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

) 2.7 

These two examples motivate the following definition: A multilinear function (i.e. a function 
which is linear in all its arguments) that acts on a vector and generates another vector is 
called a second-order tensor. Because vectors themselves can be used to represent lin-
ear functions, they can similarly be understood as tensors of a lower order, with our ten-
sors of second order acting on these lower-order tensors. This leads to the following in-
ductive, though highly abstract definition of tensors: 

Tensors of the order 𝑛 = 𝑟 + 𝑠 are the multilinear functions between the two tensor 
spaces of the order r and s. 

In the two examples given above, we discussed that second-order tensors can be de-
scribed by matrices. Similarly, tensors of lower and higher order can be described by the 
generalization of matrices in different dimensions. This leads to the representation of ten-
sors up to the fourth order in ℝ3 as shown in Tab. 1. 
 
In addition to this index notation, different types of tensors can be expressed by means 
of dashes above the symbols or parenthesis: 
 
 𝑎    scalar   = zeroth-order tensor 

 𝑎  or {a} vector   = first-order tensor 
 𝑎 or [a] 3 × 3matrix  = second-order tensor 
 … 

Because tensors are linear functions between vector spaces, every tensor can be ex-
pressed through components with respect to a basis of the vector spaces. Let’s now ex-
amine what happens when we change the basis of the vector space on which the tensor 
operates. 

Let’s assume that 𝒆′ = (𝑒′1, . . . , 𝑒
′
𝑛) and 𝒆 = (𝑒1, . . . , 𝑒𝑛) are (ordered) bases of the n-di-

mensional vector space V. Every vector, including every basis vector can be described 
as a linear combination of the basis vectors. 

 𝑒 ′
𝑗 = ∑ 𝑎𝑖𝑗𝑒𝑖

𝑛
𝑖=1  2.8 

This means that a change of basis is described through a series of coefficients 𝑎𝑖𝑗. If 𝑇𝑖𝑗 

are the components of the Tensor T with respect to the basis e, then, because of the 
linearity of tensors, we can obtain the components of T with respect to e’ through 

 

 𝑇 ′
𝑘𝑙 = ∑ (∑ 𝑎𝑘𝑗

𝑛
𝑗=1 𝑎𝑙𝑖𝑇𝑖𝑗)

𝑛
𝑖=1   2.9 

with k, l = 1,2…n, or using the shorter Summation Convention 

 𝑇 ′
𝑘𝑙 = 𝑎𝑘𝑗𝑎𝑙𝑖𝑇𝑖𝑗 2.10 

 
 



Stress and deformation tensor 

Only for private and internal use!   Updated: 30 January 2025 

 

 

page 5 of 32 

Going forward, this summation will always be implied if an index appears twice in a mul-
tiplicative term. It is worth noting that there are different ways to define tensors. Occa-
sionally, the described transformation behavior of the describing matrices is used as an 
equivalent definition to the one we used.  

Tab. 1: Matrix and tensor definition (index notation) 

symbol matrix type tensor order no. of values phys. example 

𝑎  scalar zeroth 1 density 

𝑎𝑖  vector first 3 displacement 

𝑎𝑖𝑗  3 × 3 second 9 stress 

𝑎𝑖𝑗𝑘  3 × 3 × 3 third 27 -- 

𝑎𝑖𝑗𝑘𝑙  3 × 3 × 3 × 3 fourth 81 stiffness matrix 

 
 

2.2 Pseudotensors 

If tensors can be described through generalized matrices, one can ask the question why 
we bothered with our original definition, which is certainly less intuitive. In short, not eve-
rything that can be described as a n-dimensional matrix behaves like a tensor. For exam-
ple, let’s examine the permutation symbol, also called the Levi-Civita-symbol or ε-tensor. 
This symbol is defined by the sign of a permutation of the numbers 1, 2, …, n for an 
integer n. The permutation symbol can be defined in any dimension greater than one. In 
two dimensions, it is 
 

 𝜀𝑖𝑗 = {

+1   if (𝑖, 𝑗) = (1,2)

−1   if (𝑖, 𝑗) = (2,1) 
0        if  𝑖 = 𝑗 

 2.11 

 
and arranged into a 2 × 2 antisymmetric matrix: 
 

 𝜀𝑖𝑗 = (
0 1
−1 0

) 2.12 

 
 
In three dimensions, it is, 
 

 𝜀𝑖𝑗𝑘 = {

+1   if (𝑖, 𝑗, 𝑘) = (1,2,3) or (2,3,1) or(3,1,2) (even permutations)

−1   if (𝑖, 𝑗, 𝑘) = (3,2,1) or (1,3,2) or (2,1,3) (uneven permutations) 
0           if  𝑖 = 𝑗, 𝑖 = 𝑘, 𝑗 = 𝑘 

 2.13 

 

The -tensor is completely antisymmetric (skew-symmetric): 
 
 𝜀123 = 𝜀231 = 𝜀312 = −𝜀321 = −𝜀132 = −𝜀213 = 1 2.14 
 
all other elements are zero! 



Stress and deformation tensor 

Only for private and internal use!   Updated: 30 January 2025 

 

 

page 6 of 32 

Arranged into a 3 x 3 x 3 matrix: 
 

,       2.15 

 
while the permutation symbol has a representation as a generalized matrix, it does not 
follow the transformation rules of a tensor. Under certain orthogonal transformations, for 
example a reflection in an odd number of dimensions, it should be multiplied by -1 if it 
were a tensor. However, the permutation symbol does not change at all and is therefore 
not a proper tensor.  
 
2.3 Special tensors 

 Zero tensor: 
 
All elements of the so-called zero tensor are zero, for instance: 
 

 𝑎𝑖𝑗 = (
0 0 0
0 0 0
0 0 0

)  2.16 

Symmetric tensor: 
 
A tensor is symmetric if non-diagonal elements are paarewise identical, 
e.g.: 𝑎𝑖𝑗  =  𝑎𝑗𝑖 , that means: 𝑎12 = 𝑎21, 𝑎23 = 𝑎32 and 𝑎13 = 𝑎31.  

 
Antisymmetric tensor: 
 
A tensor is antisymmetric if non-diagonal elements are paarewise identical by magnitude, 
but with opposite sign, 
e.g.: 𝑎𝑖𝑗  =  −𝑎𝑗𝑖 𝑓𝑜𝑟 𝑖 ≠ 𝑗, that means: 𝑎12 = −𝑎21, 𝑎23 = −𝑎32 and 𝑎13 = −𝑎31  

2.4 Typical tensor operation 

Transpose of a tensor (matrix): 

The transposed matrix is created by reflection over the main diagonal or with other words: 
by writing raws as columns and vice versa. 
 

(

𝑎11 … 𝑎𝑟1
⋮ ⋱ ⋮
𝑎𝑟1 … 𝑎𝑟𝑠

)

𝑇

= (

𝑎11 … 𝑎𝑟1
⋮ ⋱ ⋮
𝑎1𝑠 … 𝑎𝑟𝑠

)             2.17 

 

e.g.: 𝑎𝑖𝑗
𝑇  =  𝑎𝑗𝑖  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)

−1

 =  (

𝑎11 𝑎21 𝑎31
𝑎12 𝑎22 𝑎32
𝑎11 𝑎23 𝑎33

)                    2.18 
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Inverse of a tensor (matrix): 
 
The product of a matrix and the corresponding invertible matrix is the unit matrix (all di-
agonal elements = 1). 
 

e.g.: 𝑎𝑖𝑗   ⋅  𝑎𝑖𝑗
−1  =  𝛿𝑖𝑗 and (𝑎𝑖𝑗

−1)
−1
= 𝑎𝑖𝑗             2.19 

 
Addition and Substraction of a tensor (matrix): 
 
Only tensors of same rank can be added or subtracted. Sum or difference of two ten-
sors of same rank is also a tensor of the same rank. 
 
e.g.: 𝑎𝑖1...𝑖𝑛 + 𝑏𝑖1...𝑖𝑛 = 𝑠𝑖1...𝑖𝑛                2.20 

Tensor product (cross product: b x c): 
 
𝑎𝑖 = 𝜀𝑖𝑗𝑘 ⋅ 𝑏𝑗 ⋅ 𝑐𝑘                 2.21 

 
Tensor product (dot product: b ∙ c): 
 
The tensor product is obtained by simply multiplying components of two tensors together, 
pair by pair, so that the result of the product of a tensor with rank n with a tensor of rank 
m is a tensor of rank m+n. 
 
𝑎𝑖1....𝑖𝑚𝑗1...𝑗1...𝑗𝑛 = 𝑏𝑖1...𝑖𝑚 ⋅ 𝑐𝑗1...𝑗𝑛               2.22 

 
e.g.: 𝑎𝑖 ⋅ 𝑏𝑗𝑘 = 𝑐𝑖𝑗𝑘                  2.23 

 
Determinant of a tensor (matrix): 
 

|𝑎𝑖𝑗| = 𝜀𝑖𝑗𝑡𝑎𝑖1𝑎𝑗2𝑎𝑡3 = 𝑎11𝑎22𝑎33 + 𝑎21𝑎32𝑎13 + 𝑎31𝑎12𝑎23 − 𝑎11𝑎32𝑎23 − 𝑎12𝑎21𝑎33 −

𝑎13𝑎22𝑎31                2.24 
 
Einstein’s summation convention: 
 
Summation over equal indices is peformed: 
 
e.g.: 𝑎𝑖𝑖 = 𝑎11 + 𝑎22 + 𝑎33                2.25  

 
Replacement rule: 
 
Change of indices (e.g. from k to i): 
 
e.g.: 𝑎𝑖  =  𝛿𝑖𝑘𝑎𝑘              2.26 
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Contraction: 
 
Contraction occurs either when a pair of literal indices of the tensor are set equal to each 

other and summed over or if during the multiplication of two tensors of order n  2 one 
index of the left factor is equal to the right factor. In both cases the rank of the final tensor 
is reduced by two. 
 
e.g.: 𝑎𝑖𝑗𝑏𝑗  =   𝑐𝑖 

𝑎𝑖𝑗𝑘𝑏𝑗𝑞  =   𝑐𝑖𝑘𝑞 or 𝑎𝑖𝑖𝑘  =  𝑏𝑘 or 𝛿𝑖𝑗 𝑎𝑖𝑗𝑘  =  𝑏𝐾          2.27

  
 
Derivative (comma convention): 
 
The derivative with respect to another physical or geometrical quantity (coordinate, time 
etc.) is indicated by a comma: 
 

e.g.: 𝑢𝑖,𝑗  =  
𝜕𝑢𝑖

𝜕𝑥𝑗
 or 𝑥𝑖,𝑡𝑡 =

𝑑2𝑥

𝑑𝑡2
                2.28 

 
2.5 Tensor analysis: simple examples 

The following equations document the tensor handling with index notation. 
 
𝑎𝑖𝑖 = 𝑎11 + 𝑎22 + 𝑎33        
 
𝜎𝑖𝑗 = 𝑒𝑖𝑗𝑘𝑙 ⋅ 𝜀𝑘𝑙  

 
𝑎𝑖 ⋅ 𝑏𝑗 ⋅ 𝛿𝑖𝑗 = 𝑎𝑖 ⋅ 𝑏𝑗 = 𝑐  

 
𝑎𝑖 = 𝑏𝑖𝑗 ⋅ 𝑐𝑗  

 
𝑎𝑖𝑗 = 𝑏𝑖𝑘 ⋅ 𝑐𝑘𝑗  

 

𝑎𝑖𝑗
𝑇 = 𝑎𝑗𝑖  

 

[𝑎𝑖𝑗
𝑇 ]
𝑇
= 𝑎𝑖𝑗  

 
𝑎𝑖𝑗 ⋅ 𝑏𝑖𝑗 = 𝑏𝑖𝑗 ⋅ 𝑎𝑖𝑗 = 𝑐 

 

𝑎𝑖𝑗 ⋅ 𝑎𝑖𝑗
−1 = 𝑎𝑖𝑗

−1 ⋅ 𝑎𝑖𝑗 = 𝐼 = 𝛿𝑖𝑗 

 
𝑎𝑖𝑗 ⋅ 𝛿𝑗𝑖 = 𝑎𝑖𝑖 = 𝑏  

 
𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑖 = 𝑎1𝑘 ⋅ 𝑏𝑘1 + 𝑎2𝑘 ⋅ 𝑏𝑘2 + 𝑎3𝑘 ⋅ 𝑏𝑘3  
 
𝑎𝑖 ⋅ 𝑏𝑖 = 𝑎1 ⋅ 𝑏1 + 𝑎2 ⋅ 𝑏2 + 𝑎3 ⋅ 𝑏3  
 
𝑎 = 𝑏𝑖𝑗𝑘 ⋅ 𝑢𝑖 ⋅ 𝑣𝑗 ⋅ 𝑤𝑘  
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𝑐𝑖𝑘 = 𝑏𝑖𝑗 ⋅ 𝑏𝑘𝑙 ⋅ 𝑎𝑗𝑙  

 
𝑎𝑖𝑗𝑘 ⋅ 𝑏𝑗𝑙 = 𝑐𝑖𝑘𝑙  

 
𝑎𝑖 ⋅ 𝑏𝑗 = 𝑐𝑖𝑗 

 
𝑐𝑖 = 𝑏𝑖 − 𝑎𝑖  
 
𝛿𝑖𝑗 ⋅ 𝑎𝑖𝑗𝑘 = 𝑏𝑖𝑖𝑘 = 𝑐𝑘   

 
𝑏 = 𝑎𝑖𝑘 ⋅ 𝑎𝑗𝑘 ⋅ 𝑎𝑘𝑙 ⋅ 𝑎𝑙𝑚 ⋅ 𝑎𝑚𝑖  

 

𝑎𝑖,𝑗 =
𝜕𝑎𝑖

𝜕𝑥𝑗
  

 
𝜕𝑠2 = 𝛿𝑖𝑗 ⋅ 𝑑𝑥𝑖 ⋅ 𝑑𝑥𝑗 

 
𝜀𝑖𝑗𝑘 ⋅ 𝜀𝑖𝑗𝑘 = 6  

 
𝑎2 = 𝜀2𝑗𝑘 ⋅ 𝑏𝑗 ⋅ 𝑐𝑘 = 𝑏1 ⋅ 𝑐3 − 𝑏3 ⋅ 𝑐1  
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3. Stress tensor 

Load is generated by outer forces FA (area force) or inner forces FI (volume forces) ac-
cording to Fig. 3.1. 
 
For an arbitrary orientated cut a stress vector t is obtained, assuming that only forces and 
no moments are transferred. A denotes the area, where the force vector is acting. 
 

𝑡  =   𝑙𝑖𝑚
𝛥𝐴→0

 (
𝐹

𝛥𝐴
)                  3.1  

 
The stress state can be defined in a cartesian coordinate system as illustrated in Fig. 3.2. 
Along the three faces of the cube three stress vectors t1, t2 and t3 can be obtained, 
whereby {𝜎𝑖1, 𝜎𝑖2, 𝜎𝑖3} represent the three stress components on the particular cube 
faces (Fig. 3.2). In detail the stress tensor can be described as follows: 
 

𝜎𝑖𝑗  =   [𝑡1,  𝑡2,  𝑡3]
𝑇  =   [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

]  =   [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

]           3.2 

  

 

 

Fig. 3.1:Solid body with volume and area forces 

 

Fig. 3.2: 3-dimentional stress components at a cube 
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The first index of the stress tensor specifies the normal of the particular face under con-
sideration, the second index the impact direction of the stress component. According to 
eq. 3.2 the stress tensor consists of 9 elements. However, assumed that the sum of the 
moments is zero, pairwise identical shear stresses are obtained. This feature is also 
called ‘Boltzmann-Axiom’ and explained in more detail in Fig. 3.3 for the 2-dimensional 
case (the extension to 3D is straightforward) and by eq. 3.3. 
 

∑𝑀𝑥𝑦  =  0  = 𝜏𝑥𝑦   ⋅  𝛥𝑙  ⋅  4𝛥𝑙
2  − 𝜏𝑦𝑥   ⋅  𝛥𝑙  ⋅  4𝛥𝑙

2    ⇒  𝜏𝑥𝑦  =   𝜏𝑦𝑥 

∑𝑀𝑥𝑧  =  0  =  𝜏𝑥𝑧   ⋅  𝛥𝑙  ⋅  4𝛥𝑙
2  − 𝜏𝑧𝑥   ⋅  𝛥𝑙  ⋅  4𝛥𝑙

2    ⇒  𝜏𝑥𝑧  =   𝜏𝑧𝑥 

∑𝑀𝑦𝑧  =  0  =  𝜏𝑦𝑧   ⋅  𝛥𝑙  ⋅  4𝛥𝑙
2  − 𝜏𝑧𝑦   ⋅  𝛥𝑙  ⋅  4𝛥𝑙

2    ⇒  𝜏𝑦𝑧  =   𝜏𝑧𝑦  3.3  

 
From eq. 3.3 it follows, that the stress tensor is symmetric, that means: 
 

𝜎𝑖𝑗  =  𝜎𝑗𝑖   or 𝜎  =  𝜎
𝑇
                3.4 

 
Therefore, the number of stress values is reduced from 9 to 6 (three pairwise identical 
shear stresses meaning no rotations). The relationship between stress vector and stress 
tensor is obtained on the basis of the equilibrium conditions in direction of the coordinates 
xi (Fig. 3.4): 
 
𝑛𝑖  =   𝑐𝑜𝑠(𝑛, 𝑥𝑖)                  3.5 

  

𝑑𝐴𝑖 = 𝑛𝑖𝑑𝐴                   3.6 

 

where ni is the unit normal vector. 

 

 

 

 

 





yy

xx

yy

xx

yx

xy

xy

yx

l

 

Fig. 3.3: Equilibrium considerations for a volume element (2D, x-y-plane) 
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Fig. 3.4: Orientation of stress tensor and stress vector 

Force equilibrium in 1-, 2- and 3-direction: 
 
𝑡1𝑑𝐴  =  𝜎11𝑑𝐴1  + 𝜎21𝑑𝐴2  + 𝜎31𝑑𝐴3 
𝑡2𝑑𝐴  = 𝜎12𝑑𝐴1  + 𝜎22𝑑𝐴2  + 𝜎32𝑑𝐴3 
𝑡3𝑑𝐴  = 𝜎13𝑑𝐴1  + 𝜎23𝑑𝐴2  + 𝜎33𝑑𝐴3               3.7 

 

Using (3.5) and (3.6) eq. 3.7 can be simplified as follows: 
 
𝑡1  =  𝜎11𝑛1  + 𝜎21𝑛2  + 𝜎31𝑛3 
𝑡2  =  𝜎12𝑛1  + 𝜎22𝑛2  + 𝜎32𝑛3 
𝑡3  =  𝜎13𝑛1  + 𝜎23𝑛2  + 𝜎33𝑛3                3.8 

 

Equation 3.8 can be rewritten in tensor form as follows: 
 

𝑡𝑖  =  𝜎𝑗𝑖𝑛𝑗  =  𝜎𝑖𝑗𝑛𝑗 = 𝜎 𝑛  =  𝜎
𝑇
𝑛.               3.9 

 
Equation 3.9 documents the equality of pairwise shear stresses. The so defined second-
order stress tensor is called ‘Cauchy stress tensor’ or ‘true’ stress tensor or ‘Euler stress 

tensor’. The Cauchy stress tensor ij relates the current force vector to the current (de-
formed) area element. 
 
𝑑𝐹𝑖  =  𝜎𝑗𝑖𝑑𝐴𝑗                 3.10 

 

Fi: current force vector 
Aj: current area element with 𝑑𝐴𝑗 = 𝑛𝑗𝑑𝐴 

 
Alternatively, the current force vector Fi can be related to the original area A° (that means 
before any deformation!). Such a stress tensor is called ‚Nominal stress tensor‘, ‘La-
grange stress tensor’ or ‘First Piola-Kirchhoff tensor’ Tij: 
 
𝑑𝐹𝑖  =  𝑇𝑗𝑖𝑑𝐴𝑗

∘                 3.11 

 
The stress tensor can be decomposed into normal and shear components (n: normal 
vector; m: tangential vector) as illustrated by Fig. 3.5: 
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𝜎  =  𝑛𝑖 𝑡𝑖  =  𝑛𝑖 𝜎𝑖𝑗   ⋅  𝑛𝑗               3.12 

 

or 
 
𝜏  =  𝑚𝑖𝑡𝑖  =  𝑚𝑖𝜎𝑖𝑗𝑛𝑗               3.13 

 

In detail, equations 3.12 and 3.13 can also be written as: 
 
𝜎  =  𝑛1𝜎11𝑛1  + 𝑛1𝜎12𝑛2  + 𝑛1𝜎13𝑛3 
+ 𝑛2𝜎21𝑛1  + 𝑛2𝜎22𝑛2  + 𝑛2𝜎23𝑛3 
+ 𝑛3𝜎31𝑛1  + 𝑛3𝜎32𝑛2  + 𝑛3𝜎33𝑛3             3.14 

 

From equation 3.14 the following instances can be deduced: 
 

𝑛  =  (
1
0
0
) → 𝜎𝑛  =  𝜎11  

and 

𝑛  =  (
0
0
1
)  → 𝜎𝑛  =  𝜎33 

 
For the shear stress follows: 
 
𝜏  =  𝑚1𝜎11𝑛1  + 𝑚1𝜎12𝑛2  + 𝑚1𝜎13𝑛3 
+ 𝑚2𝜎21𝑛1  + 𝑚2𝜎22𝑛2  + 𝑚2𝜎23𝑛3 
+ 𝑚3𝜎31𝑛1  + 𝑚3𝜎32𝑛2  + 𝑚3𝜎33𝑛3            3.15 

 

 
From equation 3.15 the following instances can be deduced: 
 

𝑛  =  (
1
0
0
); 𝑚  = (

0
1
0
) → 𝜏𝑛  =  𝜎21 

 

𝑛  =  (
0
0
1
); 𝑚  = (

0
1
0
) → 𝜏𝑛  =  𝜎23 
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Fig. 3.5: Decomposition of stress vector t into normal and shear stress component 

If 𝜏𝑛  =  𝑚𝑖 𝜎𝑗𝑖 𝑛𝑗, then: 

 

𝑛  =  (
1
0
0
);  𝑚  = (

0
1
0
) → 𝜏𝑛  =  𝜎12 

 
Thereby, it always holds: ni ni = 1 and mi mi = 1 
 

Now we consider specific directions, where only normal stresses  exist, but no shear 

stress . For such a constellation it holds: 
 
𝑡𝑖 = 𝜎𝑖𝑗 ⋅ 𝑛𝑖  and  𝑡𝑖 = 𝜎 ⋅ 𝛿𝑖𝑗 ⋅ 𝑛𝑗,  3.16 

 

where nj characterizes the principal stress directions. Equalization of both expressions 
from eq. 3.16 yields: 
 

𝜎𝑖𝑗 ⋅ 𝑛𝑗 = 𝜎 ⋅ 𝛿𝑖𝑗 ⋅ 𝑛𝑗    or   (𝜎𝑖𝑗 − 𝛿𝑖𝑗 ⋅ 𝜎)𝑛𝑗 = 0  3.17 

 

Equation 3.17 describes an eigenvalue problem with eigenvalues  und nj. The non-trivial 
solution is obtained if the coefficient determinant of eq. 3.18 vanishes: 
 

𝑑𝑒𝑡(𝜎𝑖𝑗 − 𝜎𝛿𝑖𝑗) = 0                 3.18 

 
or 
 

|

𝜎11 −  𝜎 𝜎12 𝜎13
𝜎12 𝜎22  −  𝜎 𝜎23
𝜎13 𝜎23 𝜎33  −  𝜎

|  =  0              3.19 

 
The solution of equation 3.19 is a characteristic equation of third order: 
 
𝜎3  − 𝐼1𝜎

2  + 𝐼2𝜎  − 𝐼3  =  0               3.20 

 

where the following holds: 
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𝐼1  =  𝜎𝐾𝐾  =  𝜎11  + 𝜎22  + 𝜎33  =  𝜎𝑖𝑗𝛿𝑖𝑗,                      3.21 

 

𝐼2  =  
1

2
(𝜎𝑖𝑖𝜎𝑗𝑗  − 𝜎𝑖𝑗𝜎𝑗𝑖)  =  |

𝜎11 𝜎12
𝜎21 𝜎22

|  + |
𝜎11 𝜎13
𝜎31 𝜎33

|  +  |
𝜎22 𝜎23
𝜎32 𝜎33

| 

 
= 𝜎11𝜎22  + 𝜎22𝜎33  + 𝜎11𝜎33  − 𝜏12

2  − 𝜏23
2  − 𝜏31

2 ,                     3.22 
 

𝐼3  =  𝑑𝑒𝑡(𝜎𝑖𝑗)  = 
1

3
 (
1

2
𝜎𝑖𝑖𝜎𝑗𝑗𝜎𝐾𝐾  + 𝜎𝑖𝑗𝜎𝑗𝐾𝜎𝐾𝑖  − 

3

2
𝜎𝑖𝑗𝜎𝑗𝑖𝜎𝐾𝐾) 

= 𝜎11𝜎22𝜎33  − 𝜎11𝜏23
2  − 𝜎22𝜏13

2  − 𝜎33𝜏12
2  +  2𝜏12𝜏23𝜏31.           3.23 

 
The values I1, I2, I3 are called ‘main invariants’ (I1: first main invariant, I2: second main 
invariant, I3: third main invariant) of the stress tensor, that means that they are independ-
ent of the coordinate systems (independent of translations or rotations of the reference 
system). Besides these main invariants there are the so called ‘basic invariants’, which 
can be considered as a special subset of the main invariants. They are defined as follows: 
 
𝐽1  =  𝜎𝑘𝑘  =   𝐼1 

𝐽2  =  
1

2
𝜎𝑖𝑗𝜎𝑗𝑖  =  

1

2
𝐼1
2  − 𝐼2 

𝐽3  =  
1

3
𝜎𝑖𝑗𝜎𝑗𝑘𝜎𝑘𝑖  =  

1

3
𝐼1
3  − 𝐼1𝐼2  + 𝐼3              3.24 

 
Besides the cartesian representation it is also possible to find a formulation in form of the 
principal stresses: 
 
𝐼1 = 𝜎1 + 𝜎2 + 𝜎3 
𝐼2 = 𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3 
𝐼3 = 𝜎1𝜎2𝜎3                                     3.25 

 

An interesting decomposition of the stress tensor is possible, if a mean normal stress is 
defined as follows: 
 

𝜎0  =  
1

3
𝜎𝐾𝐾  =  

1

3
(𝜎11  + 𝜎22  + 𝜎33)              3.26 

 

0 is also called ‘hydrostatic stress state’ or ‘mean stress’ or ‘spherical stress’. Based on 
these definitions the stress tensor can be written as: 
 
𝜎𝑖𝑗  =  𝜎0𝛿𝑖𝑗  + 𝑠𝑖𝑗                 3.27 

 

In terms of matrix notation this means: 
 

[

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

]  =  [

𝜎0 0 0
0 𝜎0 0
0 0 𝜎0

]  +  [

𝜎11  − 𝜎0 𝜎12 𝜎13
𝜎21 𝜎22  − 𝜎0 𝜎23
𝜎31 𝜎32 𝜎33  − 𝜎0

] 

 

=  [

𝜎0 0 0
0 𝜎0 0
0 0 𝜎0

]  +  [

𝑠11 𝑠12 𝑠13
𝑠21 𝑠22 𝑠23
𝑠31 𝑠32 𝑠33

]                    3.28 
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where sij is referred as deviatoric stress part. For the spherical tensor as well as for the 
stress deviator invariants can be defined. The main invariants for the spherical tensor are 
given as follows: 
 

𝐼1
∘  =  3𝜎0   𝐼2

∘  =  
3

2
𝜎0
2   𝐼3

∘  =  𝜎0
3               3.29 

 
The corresponding basic invariants are: 
 

𝐽1
∘  =  3𝜎0   𝐽2

∘  =  
3

2
𝜎0
2   𝐽3

∘  =  𝜎0
3               3.30 

 

For the deviatoric part the main invariants are: 
 

𝐼1
𝐷  =   𝑠𝑘𝑘  =   (𝜎11  − 𝜎0)  + (𝜎22  − 𝜎0)  + (𝜎33  − 𝜎0) =  0 

 

𝐼2
𝐷  =  

1

2
(𝑠𝑖𝑖𝑠𝑗𝑗  − 𝑠𝑖𝑗𝑠𝑗𝑖) 

= (𝜎11  − 𝜎0)(𝜎22  − 𝜎0)  + (𝜎22  − 𝜎0)(𝜎33  − 𝜎0)  + (𝜎11  − 𝜎0)(𝜎33  − 𝜎0)  − 𝜎12
2  − 𝜎23

2  − 𝜎31
2  

 

𝐼3
𝐷  =  𝑑𝑒𝑡(𝑠𝑖𝑗) 

= 
1

3
(
1

2
𝑠𝑖𝑖𝑠𝑗𝑗𝑠𝑘𝑘  + 𝑠𝑖𝑗𝑠𝑗𝑘𝑠𝑘𝑖  − 

3

2
𝑠𝑖𝑗𝑠𝑗𝑖𝑠𝑘𝑘)               3.31  

 

The basic invariants for the deviatoric part are: 
 

𝐽1
𝐷  =   𝑠𝑘𝑘  =  0 

 

𝐽2
𝐷  =  

1

2
𝑠𝑖𝑗𝑠𝑗𝑖 = 

1

2
[(𝜎11  − 𝜎0)

2  + (𝜎22  − 𝜎0)
2  + (𝜎33  − 𝜎0)

2  +  2𝜎12
2  +  2𝜎23

2  

+  2𝜎31
2 ] 

=
1

6
[(𝜎11  − 𝜎22)

2  + (𝜎22  − 𝜎33)
2  + (𝜎33 − 𝜎11)

2] + 𝜎12
2   + 𝜎23

2  + 𝜎31
2  

= 
1

6
[(𝜎1  − 𝜎2)

2  + (𝜎2  − 𝜎3)
2  + (𝜎3  − 𝜎1)

2] 

 

𝐽3
𝐷  =  

1

3
𝑠𝑖𝑗𝑠𝑗𝑘𝑠𝑘𝑖  =   (𝜎1  − 𝜎0)  ⋅   (𝜎2  − 𝜎0)  ⋅   (𝜎3  − 𝜎0)                  3.32 

Quite often stress components are defined, which are related to the octahedral plane. 
The octahedral plane is equally inclined to the principal stress directions (hydrostatic 
axis). The principal stresses act along the x1, x2 and x3 direction: 
 

𝜎𝑖𝑗  =  (
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

)               3.33 

 

The stress vector tj is defined by the three principal stress components 1, 2 and 3. 
Regarding the normal on the octahedral plane the stress vector tj has the following carte-
sian components: 
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𝑡𝑖
𝑁  =  𝜎𝑖𝑗𝑛𝑗  𝑛𝑗  =  

1

√3
             3.34 

 

 



x1

x2

x3

2

3

1

t j

nj




1

2

3
 

 
 
 

𝛼  =  𝑎𝑟𝑐 𝑐𝑜𝑠 (
1

√3
)  ≈  54,7° 

𝑡𝑗  =   [𝜎1, 𝜎2,  𝜎3] 

Fig. 3.6: Representation of octahedral stresses 

The projection and summation of the components on the vektor nj (hydrostatic axis) pro-
vides the octahedral normal stress: 
 

𝜎𝑂𝐶𝑇  =  
1

√3
(
𝜎1

√3
 + 

𝜎2

√3
 + 

𝜎3

√3
)  =  

1

3
(𝜎1  + 𝜎2  + 𝜎3)  = 𝜎0           3.35 

 
The octahedral normal stress is equivalent to mean stress (Eq. 3.26). The subtraction of 
the octahedral normal stresses from the principal stresses leads to the deviatoric 
stresses:  
 
𝑠1 = 𝜎1 − 𝜎0 
𝑠2 = 𝜎2 − 𝜎0 
𝑠3 = 𝜎3 − 𝜎0 3.36 
 
These deviatoric stresses can also be referred to the octahedral plane and given as Car-
tesian components: 
 

𝑡1
𝑠  =  

𝑠1

√3
     𝑡2

𝑠  =  
𝑠2

√3
     𝑡3

𝑠  =  
𝑠3

√3
              3.37 

 
The addition of vectors leads to the octahedral shear stresses: 
 

𝜏𝑂𝐶𝑇  =  √(𝑡1)2  + (𝑡2)2  + (𝑡3)2 
 

= √
𝑠1
2

3
 + 

𝑠2
2

3
 + 

𝑠3
2

3
= √

1

3
(𝑠1
2  + 𝑠2

2  + 𝑠3
2) =  √

2

3
𝐽2
𝐷  =  √

1

3
𝑠𝑖𝑗𝑠𝑖𝑗          3.38 
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Another very popular quantity is the so-called ‚von-Mises equivalent stress‘ F. This stress 

value is based on a strength criterion, which relates the yield stress F to the stress devi-
ator: 
 

0  =  3𝐽2
𝐷  − 𝜎𝐹

2                 3.39 

 
This implies that: 
 

𝜎𝐹  =  √3𝐽2
𝐷  =  √

3

2
𝑠𝑖𝑗𝑠𝑖𝑗 =

1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2         3.40 

 

and 
 

𝜏𝑂𝐶𝑇  =  √
2

3
𝜎𝐹2  =  

√2

3
 𝜎𝐹                3.41 

 
Principal stresses and principal stress directions: 
 
The stress tensor as a symmetric linear operator has the characteristic, that it can be 
diagonalised. That means, there are three orientations (directions) perpendicular to each 
other in space, where the corresponding normal stresses reach extreme values (principal 
stresses or principal normal stresses) and the shear stresses vanish. In this case, only 
the trace of the tensors has non-vanishing values: 
 

𝜎𝑖𝑗  =  (
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

)                3.42 

 
The stress vectors on these specific surface areas coincide with the directions of the 
normal vectors of these surface areas. Therefore, the stress vectors have only one non-
vanishing component. Thus, for the stress vector at the considered surface area it holds: 
 

𝑡𝑖  =  𝑛𝑗 𝜎𝑖𝑗 

 
and 
 
𝑡1  =  𝑛1𝜎1  =  𝑙𝜎1 
𝑡2  =  𝑛2𝜎2  =  𝑚𝜎2 
𝑡3  =  𝑛3𝜎3  =  𝑛𝜎3                 3.44 

 
The normal vector 𝑛𝑖  =   {𝑙,  𝑚,  𝑛} describes the principal normal stress directions. For 
the unit vector the following holds in general: 
 
∑ 𝑛𝑖

2  =   𝑙2  + 𝑚2  + 𝑛2  =  13
𝑖 =1                3.45 
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squaring equation 3.44 yields: 
 

𝑡1
2  =   𝑙2𝜎1

2 
𝑡2
2  =  𝑚2𝜎2

2 
𝑡3
2  =  𝑛2𝜎3

2                  3.46 

 
and 

𝑙2  =  
𝑡1
2

𝜎1
2 

𝑚2  =  
𝑡2
2

𝜎2
2 

𝑛2  =  
𝑡3
2

𝜎3
2                  3.47 

 

The addition of the eq. 3.47 under consideration of eq. 3.45 gives: 

 
𝑡1
2

𝜎1
2  + 

𝑡2
2

𝜎2
2  + 

𝑡3
2

𝜎3
2  =  1                 3.48 

 

Eq. 3.48 describes an ellipsoid, that means the values 1, 2 and 3 represent the half-
axes of the ellipsoid (Fig. 3.7). The surface of the ellipsoid represents all possible stress 
vectors. If two principal stresses are equal, a spheroid is coming up. If all principal 
stresses are equal (isotropic stress state) a sphere is coming up. 
In geomechanics, especially in soil mechanics, descriptions on the basis of the deviatoric 
stress plane, see Fig. 3.8, are very common.  
 

 

Fig. 3.7: Prinzipal stress ellipsoid 
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Fig. 3.8: Decomposition of the stress state into hydrostatic and deviatoric part, where the stress vector t 

defines the stress point T 

 

Fig. 3.9: Illustration of Lode angle θ in the -plane 

 

|ℎ|  = 
√3

3
 (𝜎1  +  𝜎2  +  𝜎3)  =   

√3

3
 𝐼1 

 

|𝑠|  =  √𝑠1
2  +  𝑠2

2  +  𝑠3
2  =   √2𝐽2

𝐷

              3.49  
 
On the deviatoric plane it holds: 
 
(𝜎1  +  𝜎2  +  𝜎3)  =  𝑐𝑜𝑛𝑠𝑡                   3.50 

 
The deviatoric plane through the coordinate system is also called π-plane (Fig. 3.9). It 
holds: 
 

𝑐𝑜𝑠   (3 𝜃)  =  
3√3

2
 
𝐽3
𝐷

(𝐽2
𝐷)
3
2

       

and 

 



1

3

2





t

h

s    =    = 

Hydrostatische Achse

1
2

3

   +    +    = const.
Deviatorebene

1 2 3

T (          )
1 2 3














=

3

3
arccos

 

 

'
1

'
2

'
3

T
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𝜃  =
1

3
 𝑎𝑟𝑐𝑐𝑜𝑠   [

3√3

2
 
𝐽3
𝐷

(𝐽2
𝐷) 

3
2

]                         3.51 

 

In geotechnical engineering the follwoing two modified invariants are often used: 
Roscoe invariants p und q as well as Lode angle θ. Thereby, it holds: 
 

 𝑝  =  
1

3
 𝛪1  

𝑞  =  √3 𝐽2
𝐷  

𝜃  =  
1

3
 𝑎𝑟𝑐𝑐𝑜𝑠   [

3√3

2
 
𝐽3
𝐷

(𝐽2
𝐷)
3
2

]                  3.52 

 
For the conventional triaxial test the following expressions can be deduced: 
 

𝑝  =  
1

3
 (𝜎1  +  2 𝜎3)  

𝑞  =  𝜎1  − 𝜎3 

𝜃  =  
1

3
 𝑎𝑟𝑐𝑐𝑜𝑠   (3√6 𝑠1   ⋅  𝑠3

2) = 3√6𝑠1𝑠2𝑠3              3.53 

 

 

Fig. 3.10: Illustration of Lode angle in the principal stress space 
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Fig. 3.11: Illustration of failure envelope in principal stress space and deviatoric plane 

Principal stresses can also be expressed by stress invariants as follows: 

𝜎1 =
𝐼1

3
+

2

√3
√𝐽2

𝐷 cos (𝜃)      3.54 

𝜎2 =
𝐼1

3
+

2

√3
√𝐽2

𝐷 cos (
2𝜋

3
− 𝜃)                                                    3.55 

𝜎3 =
𝐼1

3
+

2

√3
√𝐽2

𝐷 cos (
2𝜋

3
+ 𝜃)                                                           3.56 

with     𝜃 = arccos(
2𝜎1−𝜎2−𝜎3

2√3𝐽2
𝐷
) =  

1

3
arccos (

3√3 𝐽3

2𝐽2
(𝐷)3/2)                                       3.57 
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4. Deformation tensor 

 
Deformations in terms of strain (length change and angle change) can be defined in quite 
different ways. This is illustrated for a 1-dimensionaler beam under elongation, where l = 
final length and l0 = initial length. 
 

𝜀 =
𝑙−𝑙0

𝑙0
  engineering (technical) formulation (Lagrange) 

𝜀 =
𝑙0−𝑙

𝑙
  engineering (technical) formulation (Euler) 

𝜀 =
1

2

𝑙2−𝑙0
2

𝑙0
2   quadratic formulation (Lagrange) 

𝜀 =
1

2

𝑙0
2−𝑙2

𝑙2
  quadratic formulation (Euler) 

𝜀 = 𝑙𝑛
𝑙

𝑙0
  logarithmic formulation 

 
All the above-mentioned definitions have the following common characteristics: 
 

▪ value of 0, if l = l0. 

▪ for small deformations (small strain) all above given definitions deliver nearly the 

same value. 

▪ for large deformations (large strain), the above given definitions result in signifi-

cant different values. 

Proof of approximate equality Deformationen for small strain: 
 

(a) for quadratic formulation: 

𝜀 =
1

2

𝑙2 − 𝑙0
2

𝑙0
2 =

1

2

(𝑙 + 𝑙0)(𝑙 − 𝑙0)

𝑙0
2 =

1

2

(2𝑙0)(𝑙 − 𝑙0)

𝑙0
2 =

𝑙 − 𝑙0
𝑙0

 

 
(b) for logarithmic formulation: 

Taylor-series: 𝑙𝑛( 𝑥) = ∑ (−1)∞
𝑛=1

𝑛+1 (𝑥−1)𝑛

𝑛
 

 
Based on series expansion (Taylor series) the logarithmic approach yields: 
 

𝑙𝑛
𝑙

𝑙0
= (

𝑙

𝑙0
− 1) −

1

2
(
𝑙

𝑙0
− 1)

2

+
1

3
(
𝑙

𝑙0
− 1)

3

−
1

4
(
𝑙

𝑙0
− 1)

4

+. .. 

𝑙𝑛
𝑙

𝑙0
= (

𝑙 − 𝑙0
𝑙0

) −
1

2
(
𝑙 − 𝑙0
𝑙0

)
2

+
1

3
(
𝑙 − 𝑙0
𝑙0

)
3

−
1

4
(
𝑙 − 𝑙0
𝑙0

)
4

+. . . ≈
𝑙 − 𝑙0
𝑙0
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Example:    
 
stretching by 50%: engineering procedure:  ε = 0.5 
   quadratic procedure:  ε = 0.277 
   logarithmic procedure:  ε = 0.405 
 
stretching by 1%: engineering procedure:  ε = 0.01000 
   quadratic procedure:  ε = 0.00985 
   logarithmic procedure:  ε = 0.00995 
 
 
For the coordinates of a point at the initial and final deformed state the following inverse 

relations exist: 𝑥𝑖  =   𝑥𝑖 (𝑥
𝑜

𝑗) and 𝑥
𝑜

𝑖  =  𝑥
𝑜

𝑖(𝑥𝑗). 

 
The definition of the deformation tensor can be made in two systems: 
 

1. In relation to the undeformed initial system  
(= Lagrange approach), that means ui is a function of the initial coordinates 

𝑢𝑖  =  𝑢𝑖 (𝑥𝑗
∘
)                 4.1 

 

2. In relation to the deformed final system 
(= Euler approach), that means ui is a function of the final coordinates. 

𝑢𝑖  =  𝑢𝑖
~
(𝑥𝑗)                  4.2 

 

 

 

x

x

x

2

1

3

x2

x3

x1

ui

P

P

 
 

 
 
 
„Lagrange“ 
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x

x

x

2

1

3

x2

x3

x1

ui

P

P

 

 
 
 
„Euler“ 

Fig. 4.1: Euler and Lagrange approaches in respect to deformations 

The general definition of the deformation tensor (quadratic approach) reads as follows: 
 

𝜀
𝐿

𝑖𝑗  =  
𝜕𝑥𝐾

𝜕𝑥𝑖
∘  

𝜕𝑥𝐾

𝜕𝑥𝑗
∘   (Lagrange)               4.3 

 

and 

𝜀𝑖𝑗
𝐸
 =  

𝜕𝑥𝐾
∘

𝜕𝑥𝑖

𝜕𝑥𝐾
∘

𝜕𝑥𝑗
  (Euler)               4.4 

 

With the help of the gradient tensors (= displacement gradients) 
𝜕𝑢𝑖

𝜕𝑥𝑗
∘  and 

𝜕𝑢𝑖

𝜕𝑥𝑗
, respectively, 

the deformation tensor can be defined as follows: 
 
„Lagrange“: 
 

𝑥𝑖  =   𝑥𝑖
∘
 + 𝑢𝑖 (𝑥𝑖

∘
)   with  

𝜕𝑥𝑖

𝜕𝑥𝑗
∘  =  𝛿𝑖𝑗  + 

𝜕𝑢𝑖

𝜕𝑥
∘

𝑗

  and 

𝜀𝑗𝐾
𝐿
 =  (𝛿𝑖𝑗  + 

𝜕𝑢𝑖

𝜕𝑥
∘

𝑗

)(𝛿𝑖𝑗  + 
𝜕𝑢𝑖

𝜕𝑥
∘

𝐾

) 

 

= 𝛿𝑗𝐾  + 
𝜕𝑢𝐾

𝜕𝑥𝑗
∘  + 

𝜕𝑢𝑗

𝜕𝑥𝐾
∘  + 

𝜕𝑢𝑖𝜕𝑢𝑖

𝜕𝑥𝑗
∘
𝜕𝑥𝐾
∘                       4.5 

 
„Euler“: 

𝑥𝑖
∘
 =   𝑥𝑖  −  𝑢(𝑥𝑗)  with  

𝜕𝑥
∘

𝑖

𝜕𝑥𝑗
 =  𝛿𝑖𝑗  − 

𝜕𝑢𝑖
𝜕𝑥𝑗

   

and 
 

𝜀𝑗𝐾
𝐸
 =  𝛿𝑗𝐾  − 

𝜕𝑢𝑖

𝜕𝑥𝐾
 − 

𝜕𝑢𝐾

𝜕𝑥𝑗
 + 

𝜕𝑢𝑖𝜕𝑢𝑖

𝜕𝑥𝑗𝜕𝑢𝐾
                         4.6 
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For the Lagrangian approach the grid follows the deformations. For the Euler approach 
the material ‘flows’ through the stiff grid. 
 
Besides the displacement gradient and the deformation tensor, the deformation gradient 
Fij is of vital importance: 

𝐹𝑖𝑗
𝐿  =  

𝜕𝑥𝑖

𝜕𝑥𝑗
∘  =  𝐹𝑖𝑗 or  𝐹𝑖𝑗

𝐸  =  
𝜕𝑥𝑗
∘

𝜕𝑥𝑖
 =  𝐹𝑖𝑗

(−1)
              4.7 

 
The deformation gradient is a second-rank tensor. It projects the line element vector 𝑑𝑠𝑖

∘ 

(initial configuration) to line element vector 𝑑 𝑠⃗⃗⃗⃗  ⃗ (current configuration). Thereby, the same 
material points are considered (Fig. 4.3). The illustration of the fundamental distinction 
between Euler and Lagrange approaches using numerical meshing is shown in Fig. 4.2. 
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a) Lagrange Same nodes, but different ‘geographic’ coordinates 

 

A (2, 2)

B (2, 4)

 

 

 

 

B (2, 4)

A (2, 2)

 

Original Deformed 

 

 

b) Euler new nodes, but old ‘geographic’ coordinates 

 

A (2, 2)

B (2, 4)

 

 

B (2, 2)

A (2, 1)

 

Original Deformed 

Fig. 4.1: Langange vs. Euler scheme 

 

 

y

x

Bahnlinien d s

d s°

 

Fig. 4.3: Illustration of deformation gradient 
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It holds: 
 
𝑑𝑠𝑖   =  𝐹𝑖𝑗   ⋅ 𝑑𝑠𝑗

∘  

and 

𝑑𝑠𝑖
∘   =  𝐹𝑖𝑗

(−1)
  ⋅ 𝑑𝑠𝑗                             4.8 

 
From the engineering point of view the deformation gradient can be defined according to 
eq. 4.5 as: 
 

𝜀𝑗𝑘
𝐺
 =  

1

2
(𝜀𝑗𝐾
𝐿
 − 𝛿𝑗𝐾) 

 

= 
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝐾
∘  + 

𝜕𝑢𝐾

𝜕𝑥𝑗
∘  + 

𝜕𝑢𝑖𝜕𝑢𝑖

𝜕𝑥𝑗
∘
𝜕𝑥𝐾
∘ )                4.9 

 
or according to eq. 4.6 as: 
 

𝜀𝑗𝐾
𝐴
 =  

1

2
 (𝛿𝑗𝐾  − 𝜀𝑗𝐾

𝐸
) 

 

= 
1

2
(
𝜕𝑢𝑗

𝜕𝑢𝐾
 + 

𝜕𝑢𝐾

𝜕𝑥𝑗
 − 

𝜕𝑢𝑖𝜕𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝐾
)              4.10 

 
Expression 4.9 is called ‘Green deformation tensor’, the expression 4.10 is called ‘Al-
mansi deformation tensor’. In engineering praxis the Green deformation tensor is pre-
ferred. Moreover, most often the quadratic term is neglected under the assumption, that 
𝜕𝑢𝑖

𝜕𝑥𝑗
° ≪ 1. Thus, for small deformation, the distinction between Langrangian and Eulerian 

approaches disappears and the simplified deformation tensor is given as: 
 

𝜀𝑖𝑗  =  
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
∘  + 

𝜕𝑢𝑗

𝜕𝑥𝑖
∘ )                 4.11 

 
The deformation tensor according to equation 4.11 can be extended to include rotations: 
 

𝜀𝑖𝑗  =   
1

2
(𝑢𝑖,𝑗  + 𝑢𝑗,𝑖)  +  

1

2
(𝑢𝑗,𝑖  − 𝑢𝑖,𝑗) 

 
=    𝑒𝑖𝑗   ⏟        

𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠

 +    𝑤𝑖𝑗  ⏟      
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

                       4.12 
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Fig.4.4: Illustration of rotation and deformation (2D) 

It holds: 
 

𝑤𝑖𝑗  =  (

0 𝑤12 𝑤13
𝑤21 0 𝑤23
𝑤31 𝑤32 0

)       with      

𝑤12  =  −𝑤21
𝑤13  =  −𝑤31
𝑤23  =  −𝑤32

 

and 

𝑒𝑖𝑗  =  (

𝑒11 𝑒12 𝑒13
𝑒21 𝑒22 𝑒23
𝑒31 𝑒32 𝑒33

)       with      

𝑒12  =  𝑒21
𝑒13  =  𝑒31
𝑒23  =  𝑒32

                                 4.13  

 
Thus, the deformation tensor can be written as: 
 

𝜀𝑖𝑗  =  (

𝑒11 𝑒12  + 𝑤12 𝑒13  + 𝑤13
𝑒21  + 𝑤21 𝑒22 𝑒23  + 𝑤23
𝑒31  + 𝑤31 𝑒32  + 𝑤32 𝑒33

)             4.14 

 

with 

𝑒𝑖𝑗  =  
1

2
(𝜀𝑖𝑗  + 𝜀𝑗𝑖) and   𝑤𝑖𝑗  =  

1

2
(𝜀𝑖𝑗  − 𝜀𝑗𝑖)  for 𝑖  ≠  𝑗. 

 

eij is called deformation tensor, wij is called rotation tensor. It holds: 
 

𝑒𝑖𝑗  =  
1

2
𝜅𝑖𝑗    for 𝑖 ≠ 𝑗                4.15 

 

Where ij are shear strain components and e11, e22 and e33 are direct strain components 
(elongations or shortenings). 

The volumetric strain v is given by the following expression: 
 

𝜀𝑣  =  
𝛥𝑑𝑉

𝑑 𝑉
 =   𝜀𝐾𝐾  =   𝜀11  + 𝜀22  + 𝜀33             4.16 
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The mean direct strain (elongation or shortening) 𝜀0  is given by: 
 

𝜀0  =  
1

3
 𝜀𝐾𝐾  =  

1

3
𝜀𝑣                 4.17 

 
In most cases rotations are neglected and it holds: 
 

𝜀𝑖𝑗  =  (

𝑒11 𝑒12 𝑒13
𝑒21 𝑒22 𝑒23
𝑒31 𝑒32 𝑒33

)  with  

𝑒12  =   𝑒21
𝑒23  =  𝑒32
𝑒13  =   𝑒31

           4.18 

 
In complete analogy to the stress tensor invariants can be defined also for the deformation 
tensor, e.g.: 
 
𝐼1 = 𝑒11  + 𝑒22  + 𝑒33, 

 

𝐼2  =  𝑒11𝑒22  + 𝑒22𝑒33  + 𝑒11𝑒33 and 

                    4.19  

𝐼3  =  𝑒11𝑒22𝑒33. 

 

5. Compatibility condition 

From expression 5.1 the strain components can be obtained in a unique manner. Other-
wise, the displacements can not be obtained in a unique manner based on given strains 
only. The compatibility conditions (= conditions of integrability) are necessary additional 
requirements to deduce displacements on the basis of given strain components by inte-
gration. The consideration of the compatibility conditions guarantees that strains lead to 
a ‘correct’ displacement field and the continuum is not disturbed. Starting point is the 
deformation tensor: 
 

𝜀𝑖𝑗  =  
1

2
(𝑢𝑖,𝑗  + 𝑢𝑗,𝑖)                 5.1 

 
Second derivatives of equation 5.1 with corresponding index permutations give the fol-
lowing four expressions: 
 

𝜀𝑖𝑗, 𝑘𝑙  =  
1

2
(𝑢𝑖, 𝑗𝑘𝑙  + 𝑢𝑗, 𝑖𝑘𝑙) 

𝜀𝑘𝑙, 𝑖𝑗  =  
1

2
(𝑢𝑘, 𝑙𝑖𝑗  + 𝑢𝑙, 𝑘𝑖𝑗) 

𝜀𝑖𝑘, 𝑗𝑙  =  
1

2
(𝑢𝑖, 𝑘𝑗𝑙  + 𝑢𝑘, 𝑖𝑗𝑙) 

𝜀𝑗𝑙, 𝑖𝑘  =  
1

2
(𝑢𝑗, 𝑙𝑖𝑘  + 𝑢𝑙, 𝑗𝑖𝑘)                5.2 

 
Due to the fact that the sequence of differentation is arbitrary, through addition and sub-
traction of the expressions 5.2 the following expression is obtained: 
 
𝜀𝑖𝑗, 𝑘𝑙  + 𝜀𝑘𝑙, 𝑖𝑗  − 𝜀𝑖𝑘, 𝑗𝑙  − 𝜀𝑗𝑙, 𝑖𝑘  =  0               5.3 
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From expression 5.3 the 6 compatibility conditions can be deduced under the condition 
𝜀𝑖𝑗  =   𝜀𝑗𝑖    for 𝑖 ≠ 𝑗 as follows: 

 
𝜀11, 22  + 𝜀22, 11  −  2𝜀12, 12  =  0 
𝜀22, 33  + 𝜀33, 22  −  2𝜀23, 23  =  0 
𝜀33, 11  + 𝜀11, 33  −  2𝜀13, 13  =  0 
𝜀11, 23  + 𝜀23, 11  − 𝜀13, 21  − 𝜀12, 31  =  0 
𝜀22, 31  + 𝜀31, 22  − 𝜀 21, 32  − 𝜀23, 12  =  0 
𝜀33, 12  + 𝜀12, 33  − 𝜀 32, 13  − 𝜀31, 23  =  0                5.4 

 
First equation in 5.4 can exemplary also be written as: 
 
𝜕2𝜀𝑥𝑥

𝜕𝑦2
 + 

𝜕2𝜀𝑦𝑦

𝜕𝑥2
 =  2

𝜕2𝜀𝑥𝑦

𝜕𝑥𝜕𝑦
                 5.5 

 
Under plain strain conditions all strain components and derivations in respect to the third 
direction in space vanish, that means only eq. 5.5 left over. Eq. 5.5 indicates, that the 
second derivations of the strains and the second derivations of the angular distortions 
have to be in due proportion.  

 

6. Equilibrium conditions 

For any volume element inside a body, forces and moments have to be in equilibrium. 
Usually it is assumed, that the solid body does not rotate and therefore the sum of the 
moments is zero by default. According to Fig. 6.1 the following yields: 
 

∑𝐹𝑥  =  0: 

= (𝜎𝑥  + 
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  −𝜏𝑧𝑦 𝑑 𝑥 𝑑 𝑧 + (𝜏𝑥𝑧  + 
𝜕𝜏𝑥𝑧
𝜕𝑥

𝑑 𝑥) 𝑑 𝑦 𝑑 𝑧 

  −𝜏𝑥𝑧 𝑑 𝑦 𝑑 𝑧 + 𝐹𝑧 𝑑 𝑥 𝑑 𝑦 𝑑 𝑧                   6.3 

 

 

Fig. 6.1: Force equilibrium at volume element (Fi: volume forces) 

 

Eq. 6.1 to 6.3 can be simplified in the following way: 
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