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1 Introduction

Coastal engineering as part of geotechnical engineering with focus on hydraulic engi-
neering considers the following tasks (see also Fig. 1.1):

» Protection measures at the coast line against flooding created by tsunamis,
storms, tides etc.

» Preservation of natural landscape

* Protection against shoreline erosion

= Protection and development of navigation channels, ports etc.
= Development of structures along the coastline

In principle river engineering persues similar tasks, however in detail there are also
significant differences. Also the impact of the tides on the estuaries has to be consid-
ered in addition.
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Fig. 1.1: Coastal engineering and fields involved (Fréhle & Kohlhase, 2004).
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Fig. 1.2 illustrates terms and elements, respectively, important to describe geotech-
nical systems at the coastline. The following chapters mention basic terms in respect
to coastal and river engineering in general, but special emphasis is paid on an intro-
duction into rock mechanical aspects (cliffs and rip-rap revetments).
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Fig. 1.2: Geotechnical elements of a coastal system (Kamphuis, 2010).
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2 Influencing factors (costal engineering)

Fig. 2.1 gives an overview about the most important data (factors), which may have
to be taken into account, when solving coastal engineering tasks.

1. Wave Data
—  Short-term wave spectra (measured or hindcast)
—  Long-term distributions of wave height, period and direction (usually hindcast)
2. Meteorological Data
—  Wind (speed, direction and frequency of occurrence)
—  Barometric pressure
—  Storms (tracks, frequencies)
—  Extreme values
3. Water Level Data
—  Tides
—  Seasonal and annual fluctuations
—  Longer term fluctuations (decades)
—  Fluctuations on a geologic time scale (sea level rise, isostatic rebound)
—  Water level fluctuations due to climate change
— Potential storm surge and seiche (from extreme storm events)
—  Potential tsunamis (from tectonic activity))
4. Current Data
—  Tidal, wind-driven and wave-driven currents
Hydrographic Data
— Sufficient resolution in time and space
— Above water, through the breaker zone and in deeper water
6. Sediment Transport and Morphology Data
— Rates
—  Directions
—  Erosion - accretion
7. Environmental Data
—  Water quality
—  Habitat
8. Sociological Data
— Land use
—  Economic impact
9. Historical Data
—  Extreme water levels (high and low)
—  Major erosion and accretion events
—  OId charts and paintings, maps, photographs and air photos.
10. Materials Data
— Availability, quality and cost

A

Fig. 2.1: List of influencing factors (Kamphuis, 2010)
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The most important factor is the water wave. Wave generation depends on wind con-
ditions (speed, direction, duration), water depth in the wind generation region and fetch
of the wind field. One can distinguish sea waves and swell waves. Sea (also called
wind or storm) waves propagate with lower velocity than the local wind velocity, while
swell wave propagate with higher speed. Swell waves are generated far away from the
considered coastal area. Sea waves are relatively high and short. They are destructive
due to erosion of sediments resulting in flat shoreface and steep foreshore. Swell
waves are normally relatively long and of moderate height. They tend to build up the
coastal profile to a steep shoreface (Mangor, 2017). Water waves can be characterized
by the following parameters (Frigaard et al., 1997; USACE, 2012):

»  Maximum wave height
= Mean wave period
= Mean wave direction

= Significant wave height = mean of the highest 1/3 of the waves in a repre-
sentative time series

= Significant wave period = mean period of the highest 1/3 wave heights in a
wave train

If the time-series of the water waves are transformed into the frequency domain, the
following parameters are typically determined:

= Significant wave height
» Peak period

= Significant wave period
= Mean wave period

= Mean wave direction

» Peak wave direction

Exemplary, Fig. 2.2 shows a time series of water wave parameters at the west coast
of Denmark over a period of about 18 years. Fig. 2.3 shows a so-called wave Rose-
diagram, which documents wind direction and wave magnitude. Fig. 2.4 summarizes
parameters, which have to be considered (and collected) for planning and design of
coastline and river protection measures. The hydraulics of water waves are explained
in detail in (CIRIA, 2007).
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Fig. 2.2: Time series of significant wave height (top), peak wave period (middle) and mean wave
direction (bottom) (Mangor et al., 2017)
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Fig. 2.3: Wave height directional distribution at the west coast of Danmark (Mangor et al., 2017)
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Fig. 2.4: Parameters influencing coastline and river engineering projects (CIRIA, 2007)
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3 Influencing factors (river engineering)
The water flow in rivers is influenced by several factors (see also Fig. 2.4) like:

= Riverbed morphology

= Flow velocity

=  Water depth

= Discharge distribution

= Type of soil or rock in the river bed and at the river slopes
= Climate conditions (wind, precipitation, freezing etc.)

= Vegetation along the river

= Transport of sediments

= Meandering

= River slope topography

The flow regimes of rivers are often altered by human activities and constructions,
respectively:

= Dam constructions
»  Groundwater pumping
=  Water diversion
»= Channelisation
= Sealing
The aim of such structures can be quiet diverse:
= Use of water for drinking, industry or agriculture
= Energy generation and storage
» Protection against natural disasters
= Protection against erosion
» Protection against pollution
= Usage for fishing, transport and recreation
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4 Hydro-mechanical processes at the coastline

Fig. 4.2 summarises the most important hydro-mechanical coupled processes at the
coastline according to their location (zone) as described in Fig. 4.1. If water waves
reach the coastal area several phenomena can be observed, like:

Wave breaking: wave breaks, whenever wave height exceeds a specific water depth
Wave shoaling: amplitude increase due to wave speed change in shallow water
Wave refraction: change of wave propagation direction due to seabed morphology

Wave reflection: wave is reflected by obstacles (e.g. structures) according to the re-
flection coefficient

Wave diffraction: spreading wave energy into areas behind structures

Wave swash: propagation of the wave onto the beach slope Geotechnical damage
or failure phenomena are:

Overtopping: overtopping of structures by water waves
Transmission: transmission of water through permeable structures
Piping: creation of flow channels

Erosion: degradation of soil and rock at the coastline

Sliding: slope failure due to violation of shear strength

Main geotechnical problems at the coastline are related to erosion incl. cliff destabili-
sation, rockfall, slope instabilities up to triggering of landslides as well as flooding, pip-
ing and devastation of infrastructural elements due to water wave impact. At certain
locations erosion rates can reach high values between 20 and nearly 80 m/year (for
instance at certain areas along the coastline of Vietnam, India or China). Fig. 4.2 and
4.3 illustrate typical processes.
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Fig. 4.1: Morphology and areas at the coastline (Mangor et al., 2017)
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5 Hydro-mechanical processes at rivers

The characteristic zoning along a river course is illustrated in Fig. 5.1. The main corre-
sponding hydro-mechanical coupled processes are:

= Erosion

= Transport of sediments

= Deposition of sediments

* Indentation of the riverbed

= River slope destabilisation and triggering of landslides

= Rockfall and cliff destabilisation

= Piping

River hydraulics are explained in detail by de Vriend et al. (2011).
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Fig. 5.1: River channel characteristics along the river course (Hohensinner et al., 2018)
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6 Typical coastline protection measures

Coastline protection can be performed by several methods (see for instance
Masria et al., 2015). These methods can be distinguished between hard and soft struc-
tures as well as biological concepts. The following structures are common (sometime
they are used in combination):

Seawalls: These are stiff massive barriers parallel to the coastline in the shore area
against flooding and erosion.

Revetments: These are shore-parallel structures directly placed at the coastline.

Breakwaters / moles: These structures are either detached shore-parallel struc-
tures or structures connected to the coast to break water waves.

Dykes: These are onshore structures to protect low-lying areas against flooding.

Groyns: These are linear structures perpendicular to the coastline erected in certain
distances to each other to break waves and reduce erosion.

Bulkheads: These are vertical walls at the coastline parallel to the coastline with the
aim to prevent land sliding and erosion.

Jetties/moles: These are heavy constructions for harbours or river channels con-
nection the sea to stabilise boat navigation channels.

Beach fills: This means deposition of additional sand on eroded beach areas.

Dredging: This comprises hydraulic or mechanical movement of sand from the area
of accretion to the area of erosion.

Geotextiles: This means installation of geotextiles to stabilise the coastline area.

Beach Drainage System (BDS): Lowering the groundwater level along beaches to
reduce back-swash.

Biological based measures to protect the coastline comprise the following actions:
= Sand dune stabilisation by vegetation in combination with fences.
= Atrtificial reefs to break water waves offshore.
= Artificial mangrove root systems to reduce erosion.

7 Typical river protection measures

Various structures are applied to manage an environmental and economic useful wa-
ter flow in rivers. Most popular structures and their main functions are:

Dykes: These are structures parallel to the river to reduce flooding risks.

River groynes: These structures are orthogonal or inclined to the river bed and re-
direct the water flow. They also reduce erosion at the river banks.

Revetments: These are structures along the river banks to avoid or reduce erosion.

Locks / Dams: These structures are used to regulate the water flow and to avoid
flooding or drying-up.

Besides protection measures, also the renaturation of rivers is an important geotech-
nical task, which helps to reduce the risks of flooding.
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Fig. 7.1: Typical protection measures (de Vriend et al., 2011)
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Fig.7.2: Protection measures along the lower part of the river Rhine (de Vriend et al., 2011)

8 Rock mechanical issues at coastlines and rivers

A significant part of the coastline consists of rock masses, as exemplary illustrated in
Fig. 8.1 and 8.2 for the continental European Atlantic coast lines. Hampton & Griggs
(2004) provide an overview about cliff evolution and corresponding processes. Accord-
ing to Gomez-Pujol et al. (2014), the cliff retreat rates can locally reach values up to
about several m/year. Typical average values are between 3 mm/year and 0.5 m/year.
The cliff recession process is illustrated in Fig. 8.3 and consists of 4 phases: detach-
ment, transport, deposition and removal. Fig. 8.4 shows typical cliff failure pattern and
Fig. 8.5 summarises the process of cliff failure.
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Fig. 8.1: Continental europen atlantic rocky coast (Gomez-Pujol et al., 2014)
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Fig. 8.2: Statistics of rocky coast along continental european atlantic coast (Gomez-Pujol et al., 2014)
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Westoby et al. (2018) provide an overview about up-to-date survey methods to monitor
coastal erosion at different scales in time and space:

= Cartographic mapping
= Aerial photogrammetry
= Satellite imaging

= GPS/GNNS data

= Airborne lidar

= Terrestrial lidar

= Stereo-photography

Coastline erosion and cliff failure are also important issues in Germany. An impressive
example is the erosion at the chalk cliff Jasmund (Island Rugen, Baltic Sea). Glinther
& Thiel (2009) as well as Dietze et al. (2020) have investigated the cliff failure potential.
By the turn of the year 2018/2019 app. 6.000 m? failed in several events (see Fig. 8.6
and 8.7) and in 2008 in a single event app. 10.000 m? failed. Fig. 8.7 illustrates slope
failure event distribution along the Jasmund chalk cliff.

Another interesting example is the famous island Helgoland in the North Sea (Fig. 8.8).
Massive protections measures (jetties, groynes, dune dams, embankment dams) were
installed to avoid further erosion of this sandstone island with cliffs up to 60 m high as
shown in Fig. 8.9 and 8.10.

Fig. 8.6: Failure at the chalk cliff Jasmund, island Rugen, Germany (Dietze, 2020)
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Fig. 8.10: Protection measures at the island Helgoland Diine, Germany (Bednarczyk et al., 2008)
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9 Boulders as stabilisation measure

Rock blocks (boulders) or concrete blocks in form of rip-rap are often used to stabilise
the coastline, but also river banks. Fig. 9.1 illustrates the hydromechanical coupled
behaviour of such a structure (CIRIA, 2007). The most important application of boul-
ders in river and coastal engineering is the use for revetments. Fig. 9.2 shows the
potential failure mechanisms of revetments which have to be considered during the
dimensioning. The used boulders have to fulfil certain requirements (often specified in
national regulations), especially in respect to size distribution, shape and weather re-
sistance. Fig. 9.3 to 9.6 show how boulders are used in coastal and river engineering.
Fig. 9.7 shows a typical rip-rap revetment construction. Fig. 9.8 shows factors influenc-
ing the behaviour of rip-rap revetments, which should be considered in the correspond-
ing design. Fig. 9.9 shows how the behaviour of revetments can be simulated by cou-
pling a numerical DEM-based approach (considering the boulders) with a numerical
continuum based approach (CFD) considering the water waves.
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Fig. 9.1: Hydromechanical coupled behaviour of a rocky revetment (CIRIA, 2007)
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Fig. 9.2: Potential failure mechanisms of rip-rap revetments (CIRIA, 2007)
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Fig. 9.3: Typical rip-rap based reventment (CIRIA, 2007)
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Fig. 9.7: Typical rip-rap revetment along a river bank (Mittelbach et al., 2014)
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Fig. 9.8: Factors influencing rip-rap revetment design (Mittelbach et al., 2014)
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Fig. 9.9: Numerical simulation of rip-rap revetment (Herbst et al., 2010)
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