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1 Introduction 

Concrete is a basic material in geotechnical engineering and is used in two different 
forms: 

▪ as flowable concrete (e.g. in-situ concrete or shotcrete, Fig. 1) 

▪ as prefabricated solid construction part (Fig. 2) 

Concrete is a composite material, which consists of the following ingredients: cement, 
mineral admixtures, aggregates, water and chemical admixtures. Concrete is a brittle 
material with medium to high compressive strength, but low tensile strength. There-
fore, concrete is often reinforced by steel or geosynthetic bars or fibres. The compo-
nents must be properly mixed, placed and cured to obtain the desired concrete quali-
ty and properties, respectively. 
 
Design (dimensioning) of concrete structures is based on Eurocode 2 (see Fig. 3). 
However, for geotechnical applications Eurocode 7 & 8 might be also consulted and 
for mixed structures depending on the used material Eurocode 3 to 9 might also be of 
relevance. 
 
Most important properties and requirements on concrete and cement are summa-
rised in Tab. 1. In addition shrinkage and creep behaviour should be considered. 
 

 

Fig. 1: Flowable concrete applications (left: shotcrete, right: pumped concrete; company material) 

 

 

Fig. 2: Pre-cast concrete (examples: company material) 
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Fig. 3: Eurocode system (Bond et al. 2006) 

 

Tab. 1: Characteristics and requirements on cement and concrete (Sybertz & Thielen, 2006) 
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2 Cement 

According to the cement type the following classification is used according to 
DIN EN 197-1: 

▪ CEM I  Portland cement (general purpose) 

▪ CEM II Portland composite cement (sulphate resisting) 

▪ CEM III Blast furnace cement (high early strength) 

▪ CEM IV Pozzolanic cement (low hydration heat) 

▪ CEM V Composite cement (severe sulfate resistance) 

The main constituents of the cement are: 

▪ Portland cement clinker 

▪ Granulated blastfurnace slag 

▪ Natural pozzolana (trass) 

▪ Burnt shale 

▪ Siliceous fly ash 

▪ limestone 

Tab. 2 illustrates the composition of the most common cement types. Hints how to 
choose the appropriate cement type according to exposure and construction type is 
given in Tab. 3. 

Tab. 2: Characteristics/ requirements on cement and concrete (Sybertz & Thielen, 2006) 
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Tab. 3: Application rules for cement according to DIN EN 197-1 and DIN 1164 
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3 Concrete strength 

Concrete is classified according to its uniaxial compressive strength, e.g. C20/25 
means concrete with UCS of 20 MPa (fck) and 25 MPa (fck,cube), respectively. UCS is 
measured either by using cylindrical samples (300 mm length and 150 mm diameter -
 fck) or cubic samples with edge length of 150 mm (fck,cube). In both cases the curing 
time is 28 days. Beyond C50/60 the concrete is called high-strength concrete. The off 
concrete develops during the hydration process. Exemplary, Fig. 4 illustrates the 
strength development during the hydration process. 
 
In general the strength after 28 days of curing is used as reference. The strength 
classification according to DIN EN 206-1 and DIN 1045-2 is based on the 28-day-
strength. After 28 days the strength has reached nearly the final value (100 %). After 
7 days the strength has reached about 20 % to 60 % of the final values depending on 
concrete type. The hydration process is also influenced by the environmental condi-
tions (e.g. temperature, humidity). 
 
The strength of concrete is influenced by ballast parameters (grain size, shape and 
strength), the bonding between cement matrix and ballast grains and of course the 
cement matrix itself (hydration degree, porosity, w/z-value, cement type).  

Tab. 4: Strength classes for concrete according to EN 1992-1-1: 2010 
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An overview about the evolution of early-age properties of concrete is provided by 
Nehdi & Sollmann (2011). 
 

 

Fig. 4: Strength evolution of several high strength concretes versus time (Alonso 2003) 
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4 Exposure classes 

Durable concrete constructions need the consideration of the environmental impact 
to these constructions. Tab. 5 shows the exposure classes according to EC2.  

Tab.5: Exposure classes for concrete according to EC2 
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Tab.6: Exposure classes and corresponding concrete technology measures (Grube & Kerkhoff, 2003) 

(max w/z = max. water/cement ratio; min. z = minumim content of cement in kg/m3; T = de-icing 

salt) 
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According to Grube & Kerkhoff (2003) the exposure scenarios can be described as 
follows (see also Tab. 5 and 6): 
 

“XC1 relates to the corrosion-promoting action for reinforcing steel in dry interior spac-
es, XC2 in components in non-corrosive water, XC3 in moist spaces like indoor swim-
ming pools and XC4 in external components directly exposed to rain. Components in 
the XD and XS exposure classes are exposed to the action of chloride through de-icing 
salt (XD) or seawater (XS), specifically from spray (XD1 / XS1), in continuous contact 
with salt-containing water (XD2 / XS2) and alternating contact with salt solution and 
drying out (XD3 / XS3). Further effects on the concrete itself relate to components ex-
posed to freeze-thaw (XF1 – XF4) with moderate and high water saturation and with 
and without de-icing salt. The grade of attack during concrete corrosion by chemical at-
tack (XA1 – XA3) is classified in accordance with the definitions in DIN 4030. In Ger-
many there is also the wear exposure class which regulates moderate (XM1), strong 
(XM2) and very strong (XM3).” 
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5 Hydration process 

The basic chemical elements of cement are: Ca, Si, Al, Fe and O2. They occur mainly 
as CaO, Al2O3, SiO2 and Fe2O3. During burning limestone and clay at temperatures 
between 1400 °C and 1600 °C the cement compounds are produced (clinker). The 
main components of the clinker are: 

• Alite (3CaO·SiO2)    chemical abbr.:  C3S 

• Belite (2CaO·SiO2)    chemical abbr.: C2S: 

• Tricalcium aluminate(3CaO·Al2O3)   chemical abbr.: C3A 

• Brownmillerite (4CaO·Al2O3·Fe2O3)  chemical abbr.: C4AF 

During the hydration process itself the clinker components react with water and pro-
duce cement pastes like Calcium hydroxide, Calcium Silicate Hydrate (CSH), Calci-
um Aluminate Hydrate, Calcium Trisulfoaluminate Hydrate, Calcium Monosulfoalumi-
nate etc. Fig. 5 and 6 illustrate the hydration process. 
 

 

Fig. 5: Illustration of principles of hydration process (modified after VDZ, 2002) 

https://en.wikipedia.org/wiki/Alite
https://en.wikipedia.org/wiki/Belite
https://en.wikipedia.org/wiki/Tricalcium_aluminate
https://en.wikipedia.org/wiki/Brownmillerite
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Fig. 6: Schematic view of hydration of cement grain (modified after VDZ, 2002) 

 

 

Fig. 7: Development of hydration heat vs. time (modified after VDZ, 2002) 

During the hydration process significant amount of heat is generated. Fig. 7 shows 
the heat generation versus time during the hydration process for different types of 
cement. 
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6 Shrinkage and creep 

Shrinkage means a decrease of volume during the hydration process incl. loss of wa-
ter by evaporation: 

Volumewater + Volumecement > Volumeconcrete 

The following forms of shrinkage can be distinguished, see for instance Sahinagic-
Isovic (2012), Kawano (2012) or Kovler & Zhutovsky (2006): 

▪ Plastic shrinkage (drying of fresh concrete surface) 

▪ Chemical shrinkage (chemical binding of water) 

▪ Autogenous shrinkage or hydration shrinkage (self-desiccation of pores of 
non-hydrated cement) 

▪ Drying shrinkage (water evaporation from capillaries – see Fig. 8) 

▪ Thermal shrinkage (due to temperature change during hydration process) 

▪ Carbonation shrinkage (due to chemical reactions between cement and car-
bon dioxide) 

 

 

Fig. 8: Drying concrete of different type of concrete (Kawano et al. 2012) 
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7 Numerical simulation 

Depending on task and scale (see Fig. 9) quite different modelling approaches are 
used covering: 

▪ continuum based or discontinuum based 

▪ pure mechanical or coupled 

▪ static or dynamic (incl. cyclic) 

▪ deterministic or stochastic 

 

Fig. 9: Length scales for concrete simulation (Cusatis et al. 2014) 

A typical stochastic modelling procedure to simulate time-dependent reliability con-
tains the following steps (see for instance Wan-Wendner, 2018): 

(1) development of a mechanical model with aging and damaging effects 

(2) determination of stochastic input-parameters 

(3) generation of n realizations via sampling method (e.g. LHS) 

(4)  analysis of all n realizations for m points in time 

(5) Statistical evaluation of response quantities 

(6) Reliability and life cycle performance assessment based on PFFs of actions 
and obtained CDFs of structural response for any m points in time 

(7) Sensitivity analysis 

The following example (see also Konietzky et al. 2001) illustrates a typical approach 
to simulate the hydration process including strength and stiffness evolution. The pro-
cedure contains 5 steps: 

(1) Calculation of equivalent concrete age te on the basis of actual temperature T 
and thermal time t: 

 
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(2) Determination of degree of hydration α on the basis of the equivalent concrete 
age: 


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(3) Determination of the actual hydration heat qt based on the change of the de-
gree of hydration per thermal time step Δt: 
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(4) Determination of actual temperature using the thermal constitutive law taken 
into account the corresponding hydration heat 

(5) Adjustment of strength and stiffness parameters according to the actual de-
gree of hydration 
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Using the following notation: 

EA:  activation energy 

Cc:  specific heat 

R:  universal gas constant 

t:  thermal time 

te:  equivalent concrete age 

T:  temperature 

q:  heat release 

Qmax:  maximum heat production 

C, b, t1, a, α0 cement constants 

Ecte:  Young`s modulus after complete hydration 

fcte:  uniaxial tensile strength after complete hydration 

E:  Young`s modulus 

σD:  uniaxial compressive strength 

σZ:  uniaxial tensile strength 

 
Based on the values of uniaxial compressive and tensile strength corresponding pa-
rameters for the Drucker-Prager elasto-plastic constitutive law can be derived. Ex-
emplary, Fig. 10 to 12 document a calibration or rather validation process for a spe-
cific type of concrete, by comparing simulation results with lab test results (Konietz-
ky et al. 2001).  
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Fig. 10: Evolution of degree of hydration vs. equivalent concrete age 

 

 

Fig. 11: Evolution of temperature vs. equivalent concrete age  
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Figures 13 and 14 show an application (concrete wall on a slab). The slab is initial-
ized with 278 K, the concrete wall with 283 K. The temperature at the outer boundary 
of the wall is fixed to 280 K. 
 

 

Fig. 12: Evolution of uniaxial compressive strength vs. equivalent concrete age  

 

 

Fig. 13: Temperature [K] distribution in concrete (Left: after 24 hours, right: after 72 hours) 
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Fig. 14: Degree of hydration in concrete (left: after 24 hours, right: after 72 hours) 
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8 Concrete admixtures 

Concrete admixtures or additives are chemical or mineral based ingredients to im-
prove certain properties, to reduce costs and to increase productivity. The most 
common additives are: 

▪ Shrinkage reducing additives 

o Reduces short- and long-term shrinkage incl. shrinkage cracking 

▪ Superplasticizers 

o Improves the workability by high slump 

▪ Corrosion inhibiting additives 

o Reduces corrosion in steel-reinforced concretes 

o Reduces maintenance costs 

▪ Accelerator additives 

o Reduces setting time 

o Increases rate of strength development 

o Especially important for low temperature environment 

▪ Water reducing additives 

o Creates desired slump with lower water-cement ratio 

o Creates desired strength with lower water-cement ratio 

o Helps to place concrete under difficult conditions 

▪ Air entrainment additives 

o Increases freeze-thaw durability 

o Increases workability 

▪ Self-retarding additives 

o Slow-down chemical reactions during hydration 

o Reduces water consumption 

o Reduces temperature effects 

o Eliminates cold joints 

o Resists cracking due to deflections  
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