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1 Introduction

Geophysical methods are used in rock engineering for two major purposes:

= Determination of physical rock or rockmass properties
= Exploration of underground structure incl. prospection of deposits

Geophysical methods can be applied at different scale:

= Small scale: lab samples (typically: cm- to dm-range)
= Medium scale (typically dm- to decameter-range)
= Large scale (decameter- to km-range)

Small-scale lab tests are used to determine physical rock properties. They are typically
performed on rock samples obtained from boreholes, mines, tunnels, outcrops etc. The
samples have to be prepared (shape-designed, dried or saturated etc.) to perform the
measurements.

Medium-scale field testing comprises borehole logging as well as specific local land
geophysical testing like near-field investigations at excavation surfaces. The aim is the
determination of rockmass properties as well as a detailed analysis of the local geo-
logical structure (stratigraphy).

Large-scale field measurements are used to investigate the geological structure (faults,
geological layering etc.) as well as overall rockmass properties.

Takahashi et al. (2004, 2006) have published ISRM suggested geophysical methods
for land and borehole geophysics in rock engineering. They explain typical measuring
layouts incl. data handling and interpretation.

Please note the following: geophysical methods determine quantities of different
physical fields and —in most cases — do not deliver the required geotechnical or
geological parameters directly. That means: the geophysical measured quanti-
ties have to be interpreted, which can make the result questionable. Often a cor-
relation with results from boreholes is necessary. Also, according to the scale
and parameter of measurements the resolution and corresponding scatter has
to be considered carefully. Nevertheless, geophysical methods are a very valu-
able tool in rock engineering.

The topic ‘seismic / seismoacoustic monitoring’ is described in the ebook enti-
tled “Dynamic events in rocks / rock masses”.
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2 Classification

There are different possibilities to classify geophysical measurements. One possibility
is to distinguish between:

= Active measurements (physical fields are produced artificially)
= Passive measurements (existing physical fields are used)

Another possibility if to distinguish between the different physical fields under investi-
gation:

= Seismic methods (wave velocity)

= Gravimetry (density)

= Electro-magnetic methods (electrical resistivity / magnetic susceptibility / die-
lectric constant)

= Radiometric methods (neutron- and y-radiation)

Also common is to distinguish between the places of installation:
= Ground-based measuring (at the surface)
= Borehole logging
= Combination of ground-based measurements with borehole tools
Tab. 2.1 provides a general overview about the basic geophysical properties for differ-

ent geomaterials.

Tab. 2.1: Average values of geophysical properties (Erkan, 2008)

Density Magnetic Log Dielectric Seismic
Material® ensiy Susceptibility | Resistivity constant velocity
(g/cm’) (1t 1, ~1) (Ohm-m) (s/8,) (km/sec)
Air 0.001 0 15 1 0.3
Water 1.0 -7x107"° 0-2 80 1.4-1.5
Various Ice 0.9 27x107"7 6 3-4 34
Oil 0.6-0.9 2x10” 14 2 1.3
Salt 2.2 -lxl(_):: 15 6 4.5-5
. Soil 1.5 7x10 3 4 0.1-0.2
U"S"“('l‘.""l'df“*d Clastics 1.9 5x107 34 4 12
ediments — I"Sand 16 Sx10™ 4 4 3
Oxides 3.8-9.1 3x10° (-1)-2 10-25 5.8
Metal Ores 5 /Fdes 3881 3x10™ (-6)-(-3) 8-31 55
Sedimentary _|->2ndstone 2.2 4xl():: 2-3 5 2-6
rocks | | Shale 2.1 6x1(}4. 0-1 6-8 2.3
Limestone 2.7 3x10 2-3 8-9 3-6
Igneous Granites 2.6 2x10™ 4-6 5 5-6
Rocks Basalt 3.0 7x10™" 7 12 5-6
Metamorphics | All 2.6-2.7 5x10™ 3-5 8-10 5.5-6

Anderson (2006), Coe (2018) as well as Adewuyi & Ahmed (2019) provide an over-
view about the different geophysical methods used in geotechnical engineering.
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Tab. 2.2: Application of different geophysical methods to solve geoengineering tasks: M = major appli-
cation, X = minor application (Anderson, 2006)

Application Seismic Seismic | Seismic | GPR | EM | Resist. | IP | SP | Mag. | Grav.
Refraction Reflact. Tomo.
Locating buried drums, pipelines and M M M
other ferromagnetic objecls
Localing buried non-magnslic utilities M
Localing buried non-magnatic ulilities
Mapping archeological sites (buried
farro-magnatic objacts, fire bads,
bunals, etc)

Mapping archeological sites (non
magnetic - excavations, bunals, elc)
Concrete integrity studies and
inspection

Detection of delamination and
incipient concrele spallage on bridge
decks

Locating rebar in concrete

Detection of corrosion of rebar
embedded in concrete

Evaluation of prasence, pattern and M x x
density of rebar embedded in
concrete destined for demolition
Pavement integrity studies

Detection of voids beneath pavement
Detection and delimitation of zones of
relatively thin sub-grade or base
course material

Detection and monitoring of areas of M
insufficiently dense sub-base
Large-area differantiation and M
monitoring of insufficient thickness of
pavemnent as a qualily assurance
measure during construction
Large-area differentiation and M
maonitaring of insufficient pavemant
thickness as posl-construction
maonitoring technique

Detection of bodies of sub-grade in M
which moisture content is
anomalously high, as a precursor lo
development of pitting and potholes
Mapping/locating landfills
Determining in-situ rock properties M M
{bulk, shear and Young's moduli)
Estimating in situ rock properties M M
(saturalion, porosity, permeability)
Datermining in Situ rock densities M
Determining in situ rock properties X
(dielectric constant)
Mapping abandoned, in-filled open-pit M M X x X X x
mines and quarries
Mapping abandoned underground M X X
mines
Detecting abandonad % x M M x X
Mine shafts

z|=

z=

ZIE=

=
=
=
=
=
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Tab. 2.3: Application of different geophysical methods to solve geoengineering tasks: M = major appli-
cation, X = minor application (Anderson, 2006)

Application

Seismic
Refraction

Seismic
Reflect.

Seismic
Toma.

Resist.

5P

Mag.

Grav.

Mapping Iithology (<10m depth)

M

Mapping lithology (>10m depth)

X

X

Estimating dayfmineral content

Lecating shallow sand and aravel
deposits

=| =] =

Locating sand and gravel daposits
(thal conlain heavy mingrals)

Deatarmining volume of organic
matarial in filled-in lakes or karsted
features

i

Mapping top of ground watar surface

M
(P-wawve)

(P-wawvi)

Delermining water depths
(including bridge scour)
Mapping groundwater cones of
depression

Subsurface fluid flow

Mapping contaminant plumes

Mapping crop land salination and
desalination over time

ngting undarnualor hrmmggnqﬂc
objects

Mapping bedrock wpography (=10m
depth)
Mapping bedrock topography (>10m
depth)

Mapping sub-bedrock structure

Delinealing steeply dipping geclogic
contacts (<10m depth)

==

Delineating steeply dipping geologic
eantacte {=10m depth)

®

Mapping fracture orientation (near-
surface bedrock)

Mapping fracture orientation

ldantifying regions of potantial
waakness (e.g., shear zones & faults;
=<1 0m depth)

ZIZ| =

Ed

Identifying regions of polential
weakness (e.g., shear zones & faults;
=10m depth)

Identifying near-surface karafic
sinkholes and the lataral extent of
their chaotic, breccialed, and
otherwise disrupled ground

Mapping air-filed cavities, tunnels,

{<10m depth) Tab
Mapping airfilled cavities, tunnals, L
{=10m depth)

Mapping water-filled cavilies, tunnels

Mapping clay-flled cavities. lunnels

Estimating rippability

Foundalion inlegrity studies

Dam-site integrity sludies

-

Ed

Landslide sita evaluation

ZE=xE 2| =

Locating buried well casings (medal)

== (==
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3 Popular methods in rock engineering

Within this chapter popular methods applied in rock engineering are shortly character-
ized. Some selected individual examples are shown in chapters 4 to 7. This chapter
does not consider lab-scale methods (see our e-book “Overview about rockmechanical
lab testing”), but only in-situ measurements.

3.1 Seismic methods

3.1.1 Active seismic methods

The active seismic methods respond to variations in acoustic velocity and density of
the rock material. This methods needs senders (vibrators, explosives etc.) and receiv-
ers (seismometers, geophones etc.). Measured parameters are travel times and am-
plitudes of waves. Most typical constellations used to investigate the geological struc-
ture (faults, layering, caves etc.) as well as rockmass parameters (e.g. dynamic elastic
moduli) are illustrated in Fig. 3.1.1 and 3.1.2. Seismic tomography allows to reconstruct
the underground structure three-dimensional. The basic phenomena are reflection and
refraction. Amplitudes and travel times are evaluated as well as the complete signal.
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Fig. 3.1.1: Seismic refraction (left) and reflection (right) method
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Fig. 3.1.2: Cross-hole tomography
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3.1.2 Passive seismic methods

Passive seismic methods are based on observations of seismic waves originated by
natural (e.g. earthquakes) or man-made (e.g. rockbursts, blasting, explosions) events.
For more details see our e-book “Dynamic events in rocks / rock masses”.

3.2 Gravimetry

In rock engineering gravimetric measurements are mainly used to detect cavities. This
is important in mining (especially for abandoned mines) and for activities (surface con-
structions or tunneling) in karst regions. At larger scale it can also be used to discover
mineral deposits with ore of high density.

Dense
ore
body

2 »

Fig. 3.2.1: Principle of gravimetry

Lg

3.3 Electric and electromagnetic methods

Electric and electromagnetic methods comprise a set of different methods like:

= Induced polarization

= Ground penetration radar (GPR)
= Electrical resistivity

= Self-potential

= Electromagnetic

They all measure the electrical conductivity or the magnetic field of the rockmass,
which is influenced by porosity, water saturation and structure of the contained miner-
als.

Especially GPR has seen growing interest and application within the last years in ge-
oengineering.
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4 Examples: cavity / karst detection

Geophysical methods are successfully applied for detection of cavities. Typical exam-
ples are: detection of karst cavities in respect to tunneling or road/railway construction.

Su et al. (2021) present an integrated geophysical approach comprising ground pene-
tration radar (GPR), transient electromagnetics (TEM), cross-hole electrical resistivity
tomography (ERT) and 3D laser scanning to detect karst cavities for a subway project
(see Fig. 4.1). Figures 4.2 to 4.5 illustrate the principles of the different methods, which
were step-by-step applied, beginning with large scale screening via GPR and TEM
followed by cross-hole ERT and ending with precise cavity measurement via 3D laser
scanning. Fig. 4.6 shows the final result.

Baradello et al. (2001) also presented an interdisciplinary approach applying gravity
method, resistivity method and GPR. Exemplary, Fig. 4.7 shows the result of micro-
gravity measurements. The negative anomaly at the left corner indicates a cavity,
which was later confirmed by other measuring techniques.

Raithel et al. (2016) show, how geophysical measuring techniques (here: gravimetry
and seismic methods) are used to detect large karst cavities along the tunnel route
Ulm-Wendlingen (Germany).

Lehmann et al. (2018) describe the application of borehole radar in two different
modes: as reflection (RX) mode and cross-hole (CH) mode.

Bacic et al. (2020) documents some examples for karst exploration using seismic
methods.

Page 8 of 29



Geophysical methods for rock engineering — an overview

Only for private and internal use!

Updated: 18 August 2022

(a)

Survey lines arrangement on ground surface

K30+900(S~K31+400(N)

Low-precision|extensive survey
Y

h

of amplitude)

Ground Penetrating Radar
(GPR-3D pseudo color chart

Transient Electromagnetic
(TEM-3D apparent resistivity

section)

Complementary and verified each other

T T N T
1 Surve: /1 lmcs:

wg UoPINHSUod
[ouum Y]

[BAID)UI [QUUN |
[ouuny 3y

[puuny ya| jongo

WG uondnnsuey
[ouum ydu jo nQ

»
-
<

A J A 4

Ascertain the transverse position
of developed karst abnormity body

Karst water
channel

High-precision|refined survey

Cross-hole ERT
(Specific location of karst cavity)

Quantificationally
survey

3D Laser/sonar scanning
(Volume and boundary of cavity)

(b)

survey lines of GPR

- P survey lines of TEM

Fig. 4.1: Overview about integrated geophysical approach to detect cavities applied by Su et al. (2021)
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Fig. 4.3: Principle of TEM (Su et al.,2021)
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Fig. 4.4: Principle of cross-hole ERT (Su et al., 2021)
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Fig. 4.5: Principle of 3D laser scan (Su et al., 2021)
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Fig. 4.6: Detected cavities (Su et al., 2021)
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Fig. 4.7: Micro-gravity plot (Baradello et al., 2001)
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Fig. 4.8: Large karst cavities along the railway tunnel route UIm-Wendlingen (Raithel et al., 2016)
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Fig. 4.9: Gravimetric and seismic survey results along the railway route Ulm-Wendlingen indicating

karst cavities (Raithel et al., 2016)
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5 Examples: exploration while drilling and tunneling

AFTES (2014) and Lechner (2015) provide a detailed overview about the common
techniques for exploration while tunneling and drilling, respectively. They also provide
information about application areas, accuracy and operating ranges. Some proven ge-

ophysical exploration techniques while tunnelling (see Fig. 5.1) are presented by Edel-
mann (2013).

Fig. 5.2 to 5.4 illustrate the principles of applying seismic, radar based and electrical
resistivity based methods in TBM tunnelling.

—
Geophysical System
°': S TSP |15’ ssP BORATEC MWD
¥ Tunnel Seismic Prediction Integrated Selsmic Imaging System Sonic Softground Probing Borehale Radar Technaology Measurement While Drilling
Amberg Messtechnik Herrenknecht AG Herrenknecht AG Bo-Ra-tec GmbH HK Drilling Systems
thod Refleclion Seismics Refiection SEISmics Reflection Seismics Borehole Geo Radar w
d ik ind
eology Hardrock Hardroek songrouna oas AW Ry, and oy Any geology
nelerogeneities, boulders, voids, | heterogenefies, boulders, vods, volds, changes of torque,
f fault :
I‘)nncﬂoﬂ o aults, voids aults, voids pog pog p and rotation speed
[Resolution | Range 2 5m / 150m = 5m / 150m = 0,5m / 40m 0,1m / 10m 0.1/ 30m
no 5 dunng | no during | no g during
[Advantage i,  andsill s in plane direct detection, cheap
B = X forerun of S0m for first reliable components installed in cutting | preventer necessary on high water [downtime, punctual result, ingistinet)
Disadvantage bilastings required detection, low resolution i — resull

Fig. 5.1: Proven geophysical exploration techniques while tunneling (Edelmann, 2013)
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Fig. 5.2: Principles of seismic techniques while TBM tunneling (AFTES, 2014)
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Fig. 5.3: Principles of radar based exploration while TBM tunneling (AFTES, 2014)
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Conductive soil == Injection electrode
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Fig. 5.4: Principles of electrical resistivity based exploration methods while TBM tunneling (AFTES,
2014)
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Fig. 5.5 illustrates the application of borehole radar approaches, which can either work
in reflection mode or cross-hole mode. Aim is to detect structural inhomogeneities like
faults or hard rock blocks in advance, which could potentially create problems for the
TBM.

" yoopyog wnz Bunwspuz

Sunydumq expere)

Fig. 5.5: Principle of borehole radar approach in reflection (RX) and cross-hole (CH) mode (Lehmann
etal., 2018)
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6 Examples: landslides / rockfall

Konietzky et al. (2004a,b) and TFV (2007) document how geotechnical (extensometer,
inclinometer, geodetic), geophysical (AE monitoring, seismic, geoelectric resistivity)
and hydraulic field measurements as well as several lab tests using rock samples are
used in an interdisciplinary manner to monitor and explore a creeping reservoir slope.
Finally, a 3-dimensional numerical model (Fig. 6.1) was set-up to predict the defor-
mation pattern and potential slope failure (landslide) for different precipitation scenar-
ios. Important input for the numerical model set-up was the detection of the sliding
surface obtained by geophysical measurements confirmed locally by borehole investi-
gations and an exploration tunnel. Fig. 6.2 shows seismic velocity profiles which indi-
cate clearly the location of the sliding plane inside the reservoir slope.

Jongmans et al. (2007) and Deparis et al. (2011) provide an overview about the appli-
cation of different geophysical methods for landslide and rockfall investigations.

e |

Fig. 6.1: Photo and numerical model of creeping reservoir slope (Konietzky 2004a,b et al. & TFV,
2007)
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Fig. 6.1: Result of seismic tomography to detect sliding surface shown in blue in lower plot and indi-
cated as boundary between red and green colors in upper plot, seismic velocity values in m/s

(Konietzky et al., 2004a,b & TFV, 2007)
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7 Examples: borehole measurements

Takahashi et al. (2006) provide an overview about geophysical borehole measure-
ments applied in rock engineering. They distinguish between:

= Velocity logging (measurements along the borehole)
= Electric / electromagnetic logging

= Nuclear logging

= Vertical seismic profiling (VSP)

= Seismic tomography

» Resistivity tomography

Fig. 7.1 illustrates different constellations to perform velocity measurements along a
borehole, either conducted complete inside the borehole or in combination with a
source or receiver at the surface. Exemplary, Fig. 7.2 shows typical log results in form
of velocity-depth profiles. A clear correlation between RQD and velocity becomes vis-
ible.

Source and receivers are equipped on
Down-hole Up-hole a down-hole probe specially designed
method method Cross-hole method S fon PS
uspension Sonic log
log
) sourde receiver _
surface R surface
\ . mrccci\-cr 1
source receiver recelver
r .
u receivpr l'—p &----p @ receiver (2)
receivers
i Jegf source | source
source
-
The second n:n.‘ci\'-:'.;r hole may
not be used.

Fig. 7.1: Different set-ups for velocity logging (Takahashi et al., 2006)
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Fig. 7.2: Example for PS logging (P- and S-wave velocities) and Sonic log (high frequency P-wave ve-
locity) (Takahashi et al., 2006)

VSP is based on receiver and sender locations along the borehole and at the surface
like illustrated in Fig. 7.3. Whereas velocity logging considers only first arrivals, VSP
uses the whole seismic trace and allows to construct 2-dimensional velocity profiles.
Seismic tomography (see Fig. 7.4) can be conducted — depending on layout — either
2-dimensional or 3-dimensional.
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Fig. 7.3: Different VSP measurement constellations (Takahashi et al., 2006)
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Fig. 7.4: Seismic tomography scheme using borehole and underground drift (Takahashi et al., 2006)
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8 Examples: fracture detection via ground penetration radar

Molron et al. (2020) demonstrate the potential of ground penetration radar (GPR) to
detect fractures in hard rock and compared with televiewer data and core evaluation.
For fractures with areas between 1 and 10 m? the analysis revealed that percentage
of fractures detected by GPR is (see Fig. 8.1 and 8.2):

= 5.5% of all the observed fractures regardless of orientation or if they are open
or sealed

= 42% of the fractures dipping less than 25°

= 80% of open fractures dipping less than 25°.
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Fig. 8.1: Fracture size and orientation distribution incl. GPR data (Molron et al., 2020)
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Fig. 8.2: Comparison of core log, hydraulic and GPR data for two boreholes, (a) tadpole plot repre-
senting the fracture characteristics (depth, orientation and aperture) along the borehole. Red and
green colors correspond to the open and sealed fractures, (b) borehole representation with transmis-
sive sections (yellow), (c) uninterpreted and (d) interpreted GPR data, (e) uninterpreted and (f) inter-
preted optical televiewer images showing the fracture traces on borehole walls. Fractures matching
with GPR reflectors are underlined in red lines (Molron et al., 2020).
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9 Examples: borehole logging

From the geomechanical point of view natural and induced fractures, stratigraphic in-
formation as well as borehole breakouts are the most important features detectable in
boreholes. These features provide information about rock mass classification, stress
field and rock mass properties. Besides that a lot of tectonic, sedimentary of diagenetic
features (stratigraphy, layering etc.) can be obtained from such logging. The most pop-
ular logging techniques are:

= Optical borehole camera / optical televiewer

= Acoustic televiewer

= Electrical image tools (Formation Micro Scanner: FMS or Formation Micro Im-
ager: FMI)

The working principle of these techniques is documented in Fig. 9.1. Please note, bore-
hole cameras are available at nearly any size, whereas acoustic and optical televiewer
as well as FMS/FMI are bigger tools. The borehole camera is the by far the cheapest
and most easy technique in terms of data collection and evaluation. However it works
only in clean water or under dry conditions. The same holds for optical televiewer,
although they are more sophisticated tools. Because most boreholes are filled with
mud, acoustic televiewer or FMS/FMI have to be used.
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Fig. 9.1: Schematic of electrical (A), acoustic (B) and optical (C) borehole image tools (Gaillot et al.
2007)
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Fig. 9.2: Left: FMI formation image indicating fractures and breakouts, right: FMI tool (Schlumberger:
company material)
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Fig. 9.3: Acoustic televiewer image indicating fractures (Mount Sopris Instruments: company material)
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Fig. 9.4: Optical televiewer image indicating stratification (Mount Sopris Instruments: company mate-
rial)
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Fig. 9.5: Optical televiewer (Mount Sopris Instruments: company material)

Davatzes & Hickman (2005) and Gaillot et al. (2007) provide a good overview about
pros and cons of acoustic televiewer and FMS/FMI.
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