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1 Introduction 

Over the last decades and centuries a lot of analytical solutions were obtained for elas-
tic, elasto-plastic, visco-elastic and visco-elasto-plastic problems with simple geome-
try. Some of them, especially those with openings (holes) in the 2-dimensional half 
space or infinite space allow to estimate the stress-strain situation for geotechnical 
structures (circular tunnels, shafts, drifts, boreholes etc.). Exemplary, this chapter gives 
a few very simple 2-dimensional analytical solutions.  
 
For some of the 2D solutions a polar coordinate system (fig. 1) is more suitable com-
pared to a Cartesian, although solutions are available for both of them. The transfor-
mation of stresses between Cartesian (x-y-system) and polar (r-φ-system) coordinates 
is given by eq. 1 and illustrated by fig. 1. 
 

                𝜎𝑟   =  
1

2
(𝜎𝑥   +  𝜎𝑦)  +  

1

2
(𝜎𝑥 - 𝜎𝑦) 𝑐𝑜𝑠 2 𝜑  +  𝜏𝑥𝑦  𝑠𝑖𝑛 2 𝜑 

𝜎𝜑   =  
1

2
(𝜎𝑥  +   𝜎𝑦)  − 

1

2
(𝜎𝑥 - 𝜎𝑦) 𝑐𝑜𝑠 2 𝜑  + 𝜏𝑥𝑦  𝑠𝑖𝑛 2 φ   (1) 

𝜏𝑟𝜑   =   -
1

2
(𝜎𝑥 - 𝜎𝑦) 𝑠𝑖𝑛 2 𝜑  +   𝜏𝑥𝑦  𝑐𝑜𝑠 2 φ    

 
Also, in 2D we can distinguish between  

▪ plane stress: 0z xz yz= = =     and ( )-z x y
E

=  +


    and 

▪ plane strain: 0z xz yz= = =    and ( )z x y= +     if we consider the x-y-plane. 

Assuming that the considered plane is the x-y-plane and the z-axis is perpendicular to 
the x-y-plane, the following holds: 
 

Plane stress:  

0

0

0 0 0

xx xy

ij yx yy

 
 

=
 
  

 

    and 

0

0

0 0

xx xy

ij yx yy

zz

 
 

=
 
  

 

  



   (2) 

 

Plane strain  

0

0

0 0

xx xy

ij yx yy

zz

 
 

=
 
  

 

  



 and 

0

0

0 0 0

xx xy

ij yx yy

 
 

=
 
  

 

     (3) 

Considering the Boltzmann-Axiom (momentum equilibrium) the following holds: 

xy yx=   and 
xy yx=   

 
Quite often the horizontal principal stress q is given as a fraction of the principal vertical 
stress component p, whereby q p= .   is also called lateral earth pressure coefficient 

(see fig. 2). 
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Fig. 1: Illustration of physical units in polar coordinates. 

 

 

Fig.2: Sketch for virgin stress field (far-field stresses) 

The anisotropic far-field stress state (virgin or primary stresses) is given by the follow-
ing equations using a polar coordinate system: 
 

( ) ( ) 1 1 cos2
2

o

r

p
= + − −      

( ) ( ) 1 1 cos2
2

o p
= + + −      (4) 

( )1 sin2
2

o

r

p
= −     

In Cartesian coordinates the far-field stresses are: 
o

x p=  , 
o

y p=  and 0
o

xy = . 
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2 Analytical solutions in 2D 

2.1 Internal hydrostatic pressure 

Hydrostatic pressure q inside a circular opening of radius a induces a radial symmet-
ric stress field with two principal stress components (radial and tangential stresses): 
 

r

a
q

r

2

2
=  and  

2

2

a
q

r
= −         (5) 

 
The variable r ( r a ) measures the distance from the centre of the opening. At the 

boundary of the opening ( r a= ) the stresses reach maximum values: compression of 

magnitude q as radial stress and tension of magnitude q−  as tangential stress. 

2.2 Circular opening in infinite elastic space and anisotropic stress 
field 

The elastic stress field around a circular opening is given by the so-called Kirsch-solu-
tion, which considers an anisotropic far-field stress state, characterized by . Figure 4 

illustrates the situation and Eq. 6 gives the corresponding equations for radial, tangen-
tial and shear stresses. 
 

 

Fig. 3: Illustration of stress field around circular opening under internal hydrostatic pressure. 

 

 

Fig. 4: Geometrical model of circular hole in an anisotropic infinite space  
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( ) ( )
2 2 4

2 2 4
1 1 1 1 4 3 cos2

2
r

p a a a

r r r

    
= + − − − − +    

    
      

( ) ( )
2 4

2 4
1 1 1 1 3 cos2

2

p a a

r r

    
= + + + − +    

    
     (6) 

( )
2 4

2 4
1 1 2 3 sin2

2
r

p a a

r r

  
= − + −  

  
    

 
The Kirsch-solution shows an inhomogeneous and anisotropic stress field, whereby 
the most critical values (minimum and maximum tangential stresses) are reached at 
the surface of the opening (deduced by setting first derivatives of Eq. 6 to zero): 
 

( ) ( ) ( ) ( )0 1 2 1 3p p = = + + − = −        (7) 

( ) ( ) ( )1 2 1 3 1
2

p p
 

 = = + − − = −   
 




       (8) 

 
Considering the inner pressure q (see Fig. 4) leads the following equations: 
 

 ( ) ( ) ( ) ( )0 1 2 1 3p p q     = = + + − = − − 

  (7a) 

( ) ( ) ( )1 2 1 3 1
2

p p q


    

 
 = = + − − = − −   

 
  (8a) 

 
 
Figures 5 to 7 illustrate the stress distribution around the opening in form of different 
diagrams.  
 

 

Fig. 5: Tangential stresses  along the boundary of the opening for different values of  . 
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Fig. 6: Principal stress pathway for two selected points with extreme values. 
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Fig. 7: Scaled tangential stresses vs. earth pressure coefficient at locations of extreme values 

Induced radial and tangential displacements at the boundary of the opening ( r a= ) 

are given by Eq. 9 and 10. 
 

( ) ( ) ( ) ( )2 1 1 2 1 cos2

4
1

r

pa
u r a w

E
  = = + + − − 

+

  



 (9) 

( ) ( )( )2 1 1 sin2

4
1

pa
u r a w

E
 = = + −

+

  



  (10) 

For plain strain holds: 3 4w = −   and for plain stress holds: 
3

1
w

−
=

+




. Transfor-

mation into Cartesian coordinates leads to the following expressions:  
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( )( )( )1 1 3 1 cos
4

x

pa
u w

E
= + + −     (11) 

( )( )( )1 1 3 sin
4

y

pa
u w

E
= + + −     (12) 

 
The deformations at the contour lead to an elliptical shape of the opening. If we de-

fine ( )( )0 1 1
4

p a
u w

E


= + +  the following expression is obtained: 

 

( )

( )

0

0

3 1 cos cos
equation of ellipse in parameter notation

3 sin sin

x a u a

y a u a

  = − − =   
= 

 = − − =   

  

    (13) 

2.2.1 Special case: Isotropic far field stresses 

In case of isotropic primary stress field ( 1 = ) and vanishing inner pressure the 

Kirsch-solution (Eq. 4) yields the following stress field (principal stress components): 
 

2

2
1r

a
p

r

 
= − 

 
    (14) 

2

2
1

a
p

r

 
= + 

 
    (15) 

 
The obtained radial symmetric solution (stresses are independent on φ) gives maxi-
mum tangential stresses at the contour of 2p (see also Fig. 8). 
 

 

Fig. 8: Secondary stress state around a circular opening with isotropic far-field stresses of 

magnitude p. 
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Fig. 9: Principal stress values (from B: far field - to A: boundary of opening) 

Figure 9 illustrates all stress states in the principal stress diagram. Far away from the 
opening the virgin stress field with magnitude p is reached (point B) and at the bound-
ary the extreme values ( p2 and 0) are reached. Therefore, all stress states are located 

along the line A-B. 

2.2.2 Special case: Isotropic far-field stress and hydrostatic inner pres-
sure  

Superposition principle (valid for elastic stress fields) is used to deduce stress field 
under consideration of isotropic far field stress p and hydrostatic pressure q at the 
boundary of the opening (Figure 10).  
 
Identical extreme values are obtained all along the boundary:  
 

2p q = −   (16) 

r q =   (17) 

 
Figure 12 illustrates all stress states in the principal stress diagram. Far away from the 
opening the virgin stress field with magnitude p is reached (point B) and at the bound-
ary the extreme values ( p q2 −  and q) are reached. Therefore, all stress states are 

located along the line A-B. 
 

 

Fig. 10: Circular hole under anisotropic far-field stress and hydrostatic inner pressure 
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Fig. 11: Principal stress components versus distance from boundary of opening 

 

 

Fig. 12: Principal stress values (from B: far field to A: boundary of opening) in principal stress diagram 

  



Simple analytical solutions for underground circular, elliptical and rectangular openings 

Only for private and internal use!  Updated: 11 July 2024 

 
 

Page 11 of 33 

2.3 Cylindrical tube under inner and outer hydrostatic pressure 

The so-called Lame-formulae describes the pressure distribution inside a tube with 
inner radius a and outer radius b under superimposed inner and outer hydrostatic pres-
sure (Figure 12): 
 

2 2 2 2

2 2 2 2
1r

a b p a q a
q

r b a r

 −
= + − 

−  
         (18) 

2 2 2 2

2 2 2 2
1

a b p a q a
q

r b a r

 −
= − + + 

−  
        (19) 

 
Several special cases can be deduces if a and/or b attain extreme values (0 or  ). 
 

2.4 Elliptical opening in infinite elastic space 

The tangential stress σt at the contour along an elliptical opening is given by the so-
called Inglis-solution (see also Fig. 13). This solutions requires, that main axis of el-
lipse coincide with principal stress axes.  
 

( ) ( )

( )

22 2

2 2 2

2 1 1 sin

1 sin

t
f f f

p f f

 + − − +
 =

+ −

 


       (20) 

 
The following geometrical relations hold: 
 

tan tan ,   with cos , sin     and 
y bf f f

ax
= = = = = =


     


   (21) 

 

 

Fig. 12: Illustration of Lame formulae 
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Fig. 13: Sketch of elliptical opening in an infinite medium 

Extreme values for stresses are obtained at 0=  and 
2

=


 : 

 

( )
( )1 2

0t

f
p

f

− +
= =


    (22) 

( )2 1 1
2

t f p
 

 = = + −   
 


      (23) 

 
The potential transition between compression and tension for tangential stresses is 

located at 0  : 

 

( )

( ) ( )

2

2

0 2

2 1
sin

1 1

f f

f

+ −
=

− +





         (24) 

 
Two special cases are interesting from the engineering point of view: 
 

1) ( )
1 1

 or : this leads to 1 .tf p const
f

= = = + =  


   (25) 

 

2) 
1 1

 or : this leads to 0.
2 1 2 2

tf
f

−  
= = = 

+  

 
 


    (26) 

 
The first mentioned special case is called ‘pressure ellipse’ and provides the smallest 
possible compression along the contour. The second special case is called ‘Fenner-
ellipse’ and describes the situation, where the minimum tangential stress reaches zero. 
Fig. 14 shows the tangential stresses at the boundary for the two locations with ex-
treme values assuming different axis ratios f.  
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Fig. 14: Scaled tangential stresses at contour of elliptical opening with different elliptical axis ratio vs. 

earth pressure coefficient 
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The Inglis-solution can be extended by additional consideration of internal hydrostatic 
pressure using the superposition principle. 
 
The tangential pressure at the contour of an elliptical opening under hydrostatic inner 
pressure q is given by the following expression: 
 

( )
( ) ( )

( )

2 2

2 2 2 2 2 2

2 1 sin2

1 sin 1 sin

o

t

f f ff
q q q

f f f f

− + −
= −  =

+ − + −




 
    (27) 

 

Extreme values are obtained for 0=  and 
2

=


 : 

( )
2

0 1t q
f

 
= − 
 

  and ( )1 2
2

t f q
 

= − 
 


       (28) 

 
The superposition principle leads to the following expression for the tangential stresses 
along the contour of an elliptical opening under anisotropic far field stresses and inter-
nal hydrostatic stress: 
 

( ) ( )( ){ } ( ) ( ){ }

( )

22 2 2 2

2 2 2

2 1 1 sin 2 1 sin

1 sin
t

f f f p f f f q

f f

l b b
s

b

+ - - + + - + -
=

+ -
  (29) 

Again, extreme values are obtained for 0=  and 
2

=


 : 

( )
( )1 2 2

0 1t

f
p q

f f

− +  
= + − 

 


         (30) 

( ) ( )2 1 1 1 2
2

t f p f q
 

 = + − + −   
 


         (31) 

 
Constant minimum pressure along the contour is reached under the following condi-
tion: 

1

1

f
q p

f

−
=

−


           (32) 

This leads to the ‘generalized pressure ellipse’, which results in the following constant 
magnitude for the tangential stresses along the boundary: 
 

1 1
t

f f
p q

f f

− −
= =

− −

 



         (33) 

2.5 Elasto-plastic solution for circular opening in isotropic stress 
field 

If limit state (failure envelope) is reached, plasticity occurs, which is combined with 
stress-redistributions and additional plastic deformations. In the following we consider 
the simplest case: a circular opening in an isotropic material under isotropic far-field 
stress (Fig. 15). 
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Due to the isotropic virgin stress state, the boundary conditions and the circular open-
ing, a rotationally symmetric solution is obtained. Certain different conditions have to 
be considered for the elastic and plastic part. This leads to separate equations in terms 
of stress and strain for the elastic and plastic part. But, due to the equilibrium conditions 
and the law of continuity, normal stress and radial displacements are identical at the 

transition between plastic and elastic part, which is located at R0 . The complete solu-

tion needs the assumption of a plasticity condition (failure criterion). We assume the 
well-known Mohr-Coulomb failure criterion (the superscript star indicates plastic val-
ues): 
 

* * 0r Ff = − − =            (34) 

 
where: 
 

F   uniaxial compressive strength 

( ) ( )1 sin 1 sin= + −    

  friction angle 

 

Fig. 15: Sketch of circular opening with elastic and plastic part. 

The extension of the plastic zone R0  is given by the following expression:  

 

( )0 1
1 2

1
1

F

F

R p

a
−

− −
= +

+


 

 
        (35) 

 
The radial stress at R0 is given by the following equation: 
 

( )
1

* * 0
0

2
1

1 1
F F

r

R p
R q

a

−  − 
= = − =  

− +   


 


 

      (36) 

 
Inside the elastic region (a ≥ R0) tangential and radial stress components are given 
by the following expressions: 

( )
12 2

* 0

2 2
1

1
F

r

Ra a
p p q p p

r a r

−   
 = − − = − − +   −     







     (37) 
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( )
12 2

* 0

2 2
1

1
F

Ra a
p p q p p

r a r

−   
 = + − = + − +   −     









     (38) 

 

Inside the plastic region (a ≤ R0) the following equations are valid: 
 

1

* 1
1

F
r

r

a

−  
= −  

−    







         (39) 

 
1

* 1
1
F

F

r

a

−   
= − +  

−    





 
 


        (40)

    
 
The radial displacements inside the elastic region are given by: 

( ) ( )
*

0 0

0

1 2 1 1r

R p Rr q
u

E R p r

  
= − + + −  

  
        (41) 

 
Under consideration of associated plasticity (plastic potential identical to failure crite-
rion), that means, dilation angle identical to friction angle), the radial displacements 
inside the plastic regions are given by the following expression: 
 
 

( ) ( )
12

* 0

2

0

1 1
1 2 1 2

1 1
r

Ra p r a r a
u

E a R a a r

−  − +    
= − + +  +   

+ +     

 
 

 
 

   (42) 

 
The radial displacements at the contour due to the creation of opening (induced dis-
placements) are given by the following equation: 
 

( ) ( )
2 1

* 0

0

1
1 2

1
r

Ra p a
u a

E R a

−   +  
 = − +   

+     




 


     (43) 

 
Fig. 16 illustrates the development of principal stress components (radial and tangen-
tial components) as function of distance from the boundary of the opening. Fig. 17 
illustrates all stress states in the principal stress diagram. Far away from the opening 
the virgin stress field with magnitude p is reached (point A). From that point tangential 
stresses are increasing until they reach the absolute maximum value of p q2 *−  and 

radial stresses decrease until the reach q* at the transition between elastic and plastic 

region at R0 (point B). At the boundary (point C) the minimum values ( p  and 0) are 

reached. Therefore, all stress states are located along the line A-B-C. 
 



Simple analytical solutions for underground circular, elliptical and rectangular openings 

Only for private and internal use!  Updated: 11 July 2024 

 
 

Page 17 of 33 

 

Fig. 16: Stress paths for radial and tangential stress components as function of distance  

 

 

Fig. 17: Stress values (from A: far-field over B: boundary elastic-plastic region to C: boundary of 

opening) in principal stress diagram 

2.6 Circular inclusion 

The problem of ‘inclusion’ is a fundamental mechanical one in elasticity, but is also of 
great practical importance for rock mechanics, e.g. the interaction of the lining of bore-
holes, shafts or drifts with the surrounding rock mass. Fig. 18 illustrates the problem 
considering that an inclusion has the shape of a cylindrical shell with inner diameter a 
and outer diameter b. Rock mass is characterized by Young’s modulus E and Pois-
son’s ratio ν. The inclusion is characterized by Young’s modulus E0 and Poisson’s ratio 
ν0. 
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Two different approaches can be followed: 
 

▪ Considering that rock mass and inclusion exist (1. Phase) and far-field stress 
is applied afterwards (2. Phase) – primary inclusion.  
 

▪ Considering that rock mass exist, far-field stress is already applied and corre-
sponding primary deformations have occurred (1. Phase); in a next step (2. 
Phase) circular opening with radius b is created and radial pressure is applied 
to boundary to avoid any displacement; in the last step (3. Phase) the inclusion 
is inserted and at the same time the support pressure is deleted – secondary 
inclusion. 

 

 

Fig. 18: Cylindrical shell as inclusion inside infinite rock mass under isotropic far-field stress p.  

Elastic solution of this problem is based on the assumption that displacement continuity 
at the boundary between rock mass and inclusion exist and that normal pressure q 
acts along the line linking rock mass and inclusion. 

2.6.1 Primary inclusion 

For the elastic cylindrical shell the following holds for the radial displacement consid-
ering plane stress: 
 

( ) ( ) ( ) ( )r ru b b b b b
E

0

0

1
     =  = −         (44) 

 
By substituting the tangential and radial stress components by the expression for thick-
walled tubes under inner and outer pressure according to Lame the following expres-
sion can be obtained:  
 

( ) ( )r

b
u b m q

E
0

0

= − ,          (45) 

 

where ( ) ( )m b a b a2 2 2 2= + − . 

 
For the rock mass the following expression holds for the radial displacement: 
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( ) ( )r

b
u b p q

E
2 1  = − +    (46) 

 
Equate expression (44) and (46) and solve the equation for q leads to the following 
expression: 
 

( ) ( )
E

q p
E m E

0

0 0

2

1 
=

− + +
  (47) 

2.6.2 Secondary inclusion 

The general procedure is similar to the one explained in Chapter 2.6.1, but the pri-
mary displacements have to be subtracted. Therefore, the equivalent expression to 
46 is as follows: 
 

( ) ( )
( )

( )r

bb
u b p q p b p q

E E E

1 1
2 1

 


− +
 = − + − = −    (48) 

 
Eq. (48) is set equal to Eq. (45): 
 

( )
( ) ( )

E
q p

E m E

0

0 0

1

1



 

+
=

− + +
  (49) 

 
Considering Eq. (47) and (49) the following conclusions can be drawn: 
 

▪ q qprimary secondary  

▪ for secondary inclusion: if E E p q0  or 0, then → → =  

▪ for primary inclusion: if ( )E E q p0  or 0, then 2 1 →  → = +   

▪ a E q0if 0 or 0, then 0→ → →  

 
Primary inclusion is typical for cut-and-cover technology whereas secondary inclusion 
represents the situation of support in underground mining o tunnelling. 

2.6.3 Inclusion and visco-elastic rock mass behaviour 

The above mentioned expressions can be extended by considering rheological, that 
means time-dependent, rock mass behaviour. Using the so-called Volterra or Corre-
spondence Principle, elastic constants have to be replaced by visco-elastic operators. 
Simplifying Poisson’s ratio for rock mass and inclusion are set identical. Under this 
assumption Young’s modulus has to be replaced by the following expressions: 
 

▪ Kelvin model (parallel connection of spring and dashpot with viscosity η): 
 

E E
E t

d
1

d

 
→ + 

 
         (50) 

 
▪ Maxwell model (series connection of spring and dashpot with viscosity η):  
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tE E

t

d

d
d

1
d





 
 

→  
 +
 

         (51) 

Insertion of expressions 50 and 51 into Eq. (49) and assuming that ν=0.5 leads to a 
differential equation for q, which can be solved under consideration of initial conditions, 
so that the following final expressions can be obtained: 
 

▪ for Kelvin model: 
 

( )
( )

tp
q t

E
m

E
0

0

1 e
2

1
3







− 
= − 

 + −

       (52) 

 
▪ for Maxwell model: 

 

( )
( )

t
E

m
E

q t p
0

0

1

2
1

3
1 e

 

−

 
+ − 

 

 
 

= − 
 
 
 

        (53) 

 

where E =  and 

( )

( )

E
m

E

E
m

E

0

0

0

0

2
1

3

2

3







+ −

=

−

. 

 
Both approaches deliver a non-linear q-t-response. For t →  the following results 

are obtained: 
▪ for Kelvin model: 

 

( )

p
q p

E
m

E
0

0

2
1

3


= 

+ −

         (54) 

 
▪ for Maxwell model: 

 
p q=            (55) 

2.7 Convergence-Confinement Method 

The Convergence-Confinement Methods (CCM) was developed for tunnel dimension-
ing and consist of two parts: 
 

▪ the Ground Reaction Curve (GRC)  
▪ the Support Characteristic Curve (SCC)  
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CCM assumes a circular tunnel under isotropic far-field stress. The rock mass itself is 
described by either isotropic and homogeneous elastic or isotropic and homogeneous 
elasto-plastic material behaviour.  
 
The GRC relates the support pressure acting at the tunnel boundary to the radial dis-
placements at the tunnel boundary. The GRC for isotopic linear elastic rock mass re-
sponse is illustrated in Fig. 19. Radial displacement is zero in case the radial pressure 
at the tunnel contour q equals the far-field stress p. Radial displacement u increases 
with decreasing radial pressure until the maximum displacement u0 is reached for van-
ishing radial pressure.  
 

 

Fig. 19: Ground Reaction Curve for linear elastic rock mass: radial pressure vs. radial displacement. 

 

Fig. 20: Support Characteristic Curve for linear elastic support response: support pressure vs. radial 

displacement.  

The SSC describes the bearing pressure due to the convergence of the tunnel. If one 
again assumes linear elastic response for the support corresponding SCC can be il-
lustrated as shown in Fig. 20. The displacement value u  describes the initial gap be-

tween the tunnel contour and the support and k is the stiffness of the support. 
 
The intersection between GRC and SCC describes the operation point of the system 
and allows the determination of both, the support load and the tunnel convergence. 
The working point can be determined by the following equations: 
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q
u u

k
= +  for SCC and  

u
q p p

u0

= −  for GRC    (56) 

 
Determination of the intersection delivers the following values for the working point: 
 

( )k u u
q p

p k u

0

0

*
−

= 
+ 

          (57) 

 

( )k u u
u u

p ku

0

0

0

* 1
 −

= − 
+ 

         (58) 

 

 

Fig. 21: Illustration of working point as intersection of GRC and SCC for linear elastic material 

response of rock mass and support. 

 

Fig. 22: Illustration of interaction between GRC and SCC in case of nonlinear behavior 

Fig. 21 shows that bearing pressure of the support increases with increasing stiffness 
of the support, reduced gap between support and tunnel contour and decreasing stiff-
ness of the rock mass and vice versa. 
 
Considerations regarding GRC and SCC can be extended by including nonlinear be-
haviour for rock mass and support. Typical curve progression is shown in Fig. 22. Sup-
port is represented by elastic – prefect plastic behaviour. Rock mass is represented by 
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elasto-plastic behaviour according to Mohr-Coulomb theory. Plastic rock mass behav-
iour starts, whenever the extension of the plastic zone reaches the radius of the open-

ing R a q q u u0 1 1( , where  and )= = =  

 
Extending the solution given in chapter 2.5 one can show which support pressure q 
would be necessary to avoid the development of a plastified zone. The radial pres-
sure inside the plastified zone under action of internal pressure q is given as follows: 
 

F
r

r r
q

a a

1 1

* 1
1

 





− −    
= − +    

−      

  (59) 

 
According to the Mohr-Coulomb failure criterion (34) at the transition between elastic 
and plastic region the radial stress is defined as: 
 

( ) F
r

p
R0

2
*

1






−
=

+
   (60) 

 
Equalizing (59) and (60) for r = R0 allows to determine the radius of the plastic zone 
under consideration of supporting pressure q: 
 

( )( ) ( )

( ) ( )( )
F F

F

pR

a q

0
1

1 2 1

1 1


   

  
−

− − + +
=

+ + −
  (61) 

 

Plastification of a rock mass starts whenever the following condition holds R a0( ) : 

 

Fp
q

2

1





−


+
   (62) 

 
A more general solution considering non-linear Hoek-Brown failure criterion is given 
by Carranza-Torres & Fairhurst (2000).  Further comments are given for example by 
Kainrath-Reumayer et al. (2009) and Oreste (2009). 
 
Simple and easy to handle software tools were developed like ‘Rocksupport’ (2015). 
Such tools allow to consider nonlinearities of rock mass and support. They also deliver 
data sets to convert support effects of anchors, shotcrete etc. into equivalent support 
pressure q.  
 
Fig. 23 illustrates different potential constellations of interaction between rock mass 
and support. This diagram shows, how stiffness and installation time or gap between 
support and rock mass influence the arch forming.   
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Fig. 23: Illustration of potential interaction of GRC with different SCC 

 
2.8 Rectangular opening in infinite elastic space 

 
For openings with rectangular cross section only approximate analytical solutions exist 
like compiled by Denkhaus (1958). In these approximate solutions the rectangular 
cross section is considered as a special case of an ellipse by using rectilinear coordi-
nates, which delivers rectangular cross sections with rounded corners. 
 
For an opening with quadratic cross section under isotropic far-field stress the tangen-
tial stress at the contour σθ can be expressed by the following formula (see also Fig. 
24): 
 

( )2

2

2 1 9

1 9 6 cos(4 )

n
p

n n




 −
 =
+ −    

           (63) 
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where: 

σϴ = tangential stress at the surface 
p = in-situ far-field stress 
n = factor describing the sharpness of the corner (see Fig. 24) 
ϴ = angle according to Fig. 24 

 
Note: best approximation for the square are reached for values of n between -0.100 
and 0.111 (see Fig. 24).  
 

 
 
Fig. 24: Scaled tangential stress at the contour of a quadratic opening under isotropic far-field stress p 
for different values of n according to Eq. 63 (Denkhaus, 1958). 
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Fig. 25: Scaled tangential stress at the contour of a quadratic opening under anisotropic far-field 
stresses p and k∙p for different values of k (Denkhaus, 1958). 

 
 
The following formula describes the tangential stress concentration at the contour for 
an opening with a rectangular cross section with different height to width ratio exposed 
to an isotropic far-field stress: 
 

( )( )2 2

2 2

1 1 9 (1 ) 4 cos(2 )2

1 1 9 2 (3 1) cos(2 ) 6 cos(4 )

n n m n mn
p

n m n m n n




 − − − + +  
 = 
− + + −  −   −    

     (64) 

with: 
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1

(1 )

1

c

b
m n

c

b

 
− 

 = +
 

+ 
 

             (65) 

where: 
σϴ = tangential stress at the surface 
p = in-situ far-field stress 
n = factor describing the sharpness of the corner (see Fig. 24) 
ϴ = angle according to Fig. 24 
c = width of opening 
b = height of opening 

 
 

 
 
Fig. 26: Scaled tangential stress at the contour of a rectangular opening with width c and height d un-
der isotropic far-field stress p (Denkhaus, 1958). 
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Similar results are given by Heller et al. (1959) as shown in Fig. 26 in terms of stress 
amplification (maximum tangential stress at boundary to initial isotropic stress) for dif-
ferent values of K (ratio of height to width of rectangular opening) and different values 
of ρ (ratio of corner radius to smaller edge length of opening).  
 

 
 
Fig. 27: Stress concentration factor at contour as function of radius ratio ρ (corner radius / smaller 
edge length of opening) for rectangular opening with K-ratio (width to height ratio of opening) under 
isotropic far-field stress (Heller et al., 1959). 
 

As Fig. 27 indicates: the sharper the edge, the stronger the stress concentration. How-
ever, the increase is non-linear and becomes weaker with increasing sharpness of the 
edge. As illustrated also in Fig. 28, the rounding of corners in-situ will lead to realistic 
local stress magnification up to about 5, but definitely not exceed 10. 
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Fig. 28: Stress concentration factor at contour as function of far-field stress ratio for quadratic opening 
(corner radius / length of opening = 1/12) (Caudle & Clark, 1955). 
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2.9 Arbitrary shaped opening in infinite elastic space 

 
Using the complex variable theory it is possible to deduce stresses and displacements 
around tunnel with complex shape like documented by Fan et al. (2024). They consid-
ered the 2D plane strain situation under anisotropic far-field stresses and documented 
exemplary for a horseshoe shape tunnel good agreement with numerical simulation 
results. 

  
Fig. 29: Mapping of desired tunnel shape and assumed far-field stresses for the exemplary calculation 
(Fan et al., 2024). 

 

 
 
Fig. 30: Comparison of obtained secondary stress fields for exemplary tunnel calculation in terms of 
minimum principle stress component (Fan et al., 2024). 
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Fig. 31: Comparison of obtained stress profiles along different directions for exemplary tunnel calcula-
tion (Fan et al., 2024). 
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3 Wellbore stability 

In respect to wellbore stability two problems have to be considered: potential borehole 
breakouts (shear failure) and potential hydraulic fracturing (tensile frailure). By 
extending the classical Kirsch solution (see chapter 2) and considering pore water 
pressure, wellbore mud pressure and thermal stresses the following critical stresses 
can be found at the borehole wall: 
 

min 3 2 term

h H pS S P P  = − − −  −            (66) 

 
max 3 2 term

H h pS S P P  = − − −  −           (67) 

 

1

term E T







  
=

−
            (68) 

 
where: 
 
σφ

min minimum effective tangential stress at borehole wall 
σφ

max maximum effective tangential stress at borehole wall 
Sh minimum primary (virgin) principal horizontal stress 
SH maximum primary (virgin) principal horizontal stress 
Pp Pore water pressure 
σφ

term Thermal tangential stress at borehole wall 
ΔP Difference between borehole pressure (mud weight) and pore water pressure 
UTS Uniaxial tensile strength 
UCS Uniaxial compressive strength 
E Young’s modulus 
ν Poisson’s ratio 
ΔT Temperature difference 
α Thermal expansion coefficient 
  
 
Borehole damage has to be considered under the following circumstances: 
 

if   
min UTS       hydraulic fracturing                  (69)

    

if   
max UCS      borehole breakout                  (70) 

 
Eq. 69 and 70 consider the problem in a simplified manner (uniaxial). Especially for the 
initiation of borehole breakouts the assumption of the Mohr-Coulomb criterion may 
provide more precise results: 
 

max 1 sin 2 cos
0

1 sin 1 sin

c
P

 


 

+
= −  −

− −
        (70) 
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