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1 Introduction

Geotechnical constructions and geological processes comprise a quite large range of
strain rates and durations as shown in fig. 1. The impact and blasting region are charac-
terized by pronounced increased dynamic strength and stiffness values. Fig. 2 illustrates
corresponding strain rates applied in different geotechnical lab test devices.

Depending on the loading velocity one can distinguish static (or quasi-static) and dynamic
rock properties. Most important are the following relations:

e Increasing loading velocity — increasing strength
e Increasing loading velocity — increasing stiffness

In general three stages can be distinguished in respect to strength as shown in fig. 3. The
transition between these stages can be characterized by the following values:
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Another classification scheme is shown in fig. 4.
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Fig. 1: Typical strain rates and durations in geotechnical engineering (Zhang, 2014)
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Fig. 2: Typical strain rates applied in different geotechnical lab test approaches (Zhang, 2014)
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Fig. 3: General relation between dynamic strength and strain rate (Qian et al., 2009)
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Fig. 4: Classification scheme according to strain rates (Li et al., 2018)

Page 4 of 10



Dynamic rock properties

Only for private and internal use! Updated: 10 July 2018

2 Dynamic rock properties

The change in material properties can be characterised by the so-called Dynamic In-
crease Factor (DIF). Figures 5, 6 and 7 show DIF values obtained from testing of quite
different rocks (sedimentary, plutonic and metamorphic). They all show a distinct increase
in strength (both, compressive and tensile) beyond a strain rate of app. 10 s. Corre-
sponding general formulas to predict dynamic strength are also given in fig. 5 and 6 for

the regime 1 and 2 (see also Zhang & Zhao, 2014).
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Fig. 5: DIF vs. strain rate for compressive strength (Li et al., 2018)
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Fig. 6: DIF vs. strain rate for tensile strength (Li et al, 2018)
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W Li 2017 Dolomite

Ni, 2014 Green sandstone
Niu, 2014 Anifical rock D

Niu 2014 Anifical rock B
Zhang, 2012 Fangshan Marble
Liu 2012 Amphibolites
Liu.2012 Sericite-quartz schist
Liu 2012 Sandstone

Doan, 2011 Carara marble
Kimberley. 2011 Ordinary chondrite
Yuan, 2011 Westerly granite
Liu, 2011 Sencite-quartz

Liu, 2011 Sandstone

* Jiang, 2010 Sandstone

Doan, 2009 San Andreas Fault granite
Doan, 2012 Tam granite

Xia, 2008 Bame grante

Ca, 2007 Argillte

Li, 2005 Bukt Timah granite

Li, 2005 Bukit Timah granite
Frew, 2001 indiana limestone
Frew, 2001 Indiana limestone
Frew. 2001 indiana limestone
Zhao, 1999 Bukit Timah granite
Olsson, 1991 Tuff

Klepaczio, 1930 Coal
Blanton, 1981 Granodionte
Blanton, 1981 Limestone
Blanton, 1981 Sandstone
Chong, 1980 Medium oil shale
Lankord, 1976 Medium oil shale
Lindholm, 1974 Dresser basalt
Goldsmith, 1976 Barre grante
Goldsmith, 1976 Yule marble
Perkins, 1970 Tonaiite

Green, 1969 Westerly granite
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Stowe. 1968 Basalt
Kumar, 1968 Basalt
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@ Wang, 2011 Granite
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Xu, 2014 Amphibolite

Xu, 2014 Sercite-quartz schist
Xu, 2014 Sandstone

Li, 2013 Granite

Li, 2013 Granite(DT)

Cadoni, 2010 Othogneiss
Asprone, 2009 Tuff

Wang, 2009 Marble

Kubota, 2008 Sandstone

Cai, 2007 Argilite

Zhou, 2007 Bukit Timah granite
Zhou, 2007 Grantte

# Cho, 2003 Inada granite
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Khan, 1987 Granite
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Dynamic rock properties

Only for private and internal use! Updated: 10 July 2018

F Al A. With pulse shaping (mm):
1 1Y Zhang, 2013 F-marble: ¢50x50
Kimberley, 2011 O-chondrite: 5x5x5
Wang, 2011 Granite: ¢21.6x13.1
Yuan, 2011 W-granite: ¢10.2x(6-8)
Xia, 2008, B-granite: ¢50x50
Li, 2005 BT-granite: ¢70x70
Li, 2005 BT-granite: ¢70x35
Frew, 2001 I-limestone: ¢12.7x12.7
Frew, 2001 I-limestone: ¢12.7x19.05
Frew, 2001 I-limestone: ¢12.7x25.4
B. Without pulse shaping (mm):
Doan, 2011 C-marble: ¢g25x25
% Doan, 2009 SA-granite: g25x25
#  Doan, 2009 T-granite: ¢25x25
Cai, 2007 Argillite: ¢13.22x(4.51-5.9)
®  Sylven, 2004 Kidney stone: $19x4.6
Zhao, 1999 BT-granite: #30x60
Olsson, 1991 Tuff: ¢12.5x12.5/25
Klepaczko, 1990 Coal: ¢20x40
: Blanton, 1981 Granodiorite: ¢12.6x53
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Howe, 1974 M-marble: ¢19.5x19.05/31.75

¢ Lindholm, 1974 D-basalt: $12.7x25.4

O Perkins, 1970 Tonalite: $12.7x19.05
Green, 1969 W-granite: ¢12.7x25.4

Green, 1969 Tuff: $12.7x25.4

®  Green, 1969 S-limestone: ¢12.7x25.4

¥ Stowe, 1968 Basalt: ¢54x108

> Kumar, 1968 Basalt: 12.7x12.7x12.7

* Kumar, 1968 Granite: 12.7x12.7x12.7

EG™)

Fig. 7: Ratio between dynamic and static uniaxial compressive (top) and tensile strength values (bottom)
for different rocks (Zhang & Zhao, 2014)

Similar relations are obtained considering different loading rates like shown in fig. 8, 9
and 10. In terms of fracture mechanics one has to pay attention to the fact, that increasing
loading or deformation rate will lead to a transition of single to multiple fracturing due to
the excess of kinetic energy as illustrated in fig. 11.

Besides the increase of strength the stiffness shows also an increase with increasing

deformation rate as illustrated in fig. 12. Exemplary, the increase in stiffness with increas-
ing strain rate for rock-like material (especially concrete) is shown in fig. 13.
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Direct tension (mm):

® Huang, 2010 L-granite: ¢24x38
Brazilian disc (mm):

® Zhang, 2013 F-marble: ¢50x20
Yan, 2012 Tuff: ¢44x20
Yan, 2012 Basalt: ¢44x20
Huang, 2010 L-sandstone: ¢44x20
Dai, 2010 B-granite: ¢40x16
Dai, 2010 L-granite: $40x20
Zhao, 1999 BT-granite: ¢50x20
Bending (mm):

© Dai, 2010 L-granite: #40x21.8x16

Zhao, 1999 BT-granite: 140x30x15
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Fig. 8: Ratio between dynamic and static tensile strength for different loading rates (Zhang & Zhao, 2014)
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Fig. 9: Mode-I fracture toughness for dry and wet sandstone as function of loading rate (Cai et al., 2018)
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Fig. 10: Ratio between dynamic and static fracture toughness (Mode-1) depending on loading rate (Zhang
& Zhao, 2014)
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Fig. 11: Principal sketch of normalised dynamic tensile strength as function of strain rate illustrating the
transition between single and multiple fracturing (Zhang & Zhao, 2018)

Page 8 of 10



Dynamic rock properties

Only for private and internal use! Updated: 10 July 2018

A
Increasing
» strain rate
o
E
=
= s N
< PANETA
7 o\
7/ I \
/ |
/ I
/7 I
/i I
I
| -
“'.s Ed
Axial strain

Fig. 12: Stiffness increase with increasing loading rate (static vs. dynamic)
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Fig. 13: Young’s modulus vs. strain rate for fissured rock-like material (Feng et al., 2018)

The most popular and suited devices to determine strength parameters at high strain
rates are the Split-Hopkinson-Bar (SHB) device (Zhou et al., 2012; Tawadrous 2010) and
the Plate Impact device (Zhang & Zhao, 2014). These devices can be extended to per-
form tests at high temperatures as well as under biaxial or triaxial stress states (Zhang &
Zhao, 2014).
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