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1

Introduction

Instability (failure) of rock slopes is mainly governed by one of the foland owing mech-
anisms:

Wedge failure by two discontinuities in which intersection lines dip towards the
slope

Toppling of rock columns or slabs created by vertical discontinuities close to the
slope

Circular slip surfaces in heavily jointed / fractured rocks masses

Rockfall of loose blocks due to slipping, rolling or toppling

Planar failure along discontinuities dipping in the direction of the slope

Key factors affecting the slope stability are:

Geometry of slope

Geometry and orientation of planes of weakness (joints, faults, cracks etc.)
Properties of planes of weakness (cohesion, friction, fillings, roughness etc.)
Water pressure (joint and pore water pressure)

Additional loads (static or dynamic)

In terms of the geometry we can distinguish between planar, circular, piece-wise pla-
nar, non-circular and composite failure surfaces (see Fig. 1.1).

Composite

Fig. 1.1: Different types of slip surfaces

2 Analysis methods

In principle the following methods / tools are available to determine or estimate the
slope stability:

Analytical solutions for simple constellations considering mechanical equilib-
rium

Kinematic assessment of potential failure along discontinuities (wedge analysis)
Empirical approaches based on rock mass classification schemes

Limit equilibrium methods

Numerical methods
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2.1 Analytical Solutions

Simple analytical solutions can be obtained by considering force and/or moment equi-
librium. The following three pictures give examples.
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Yo = unit weight of water
¥ = unit weight of rock

Fig. 2.1.1: Analytical planar failure analysis (Eberhardt, 2003)
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Fig. 2.1.2: Analytical wedge failure analysis (Eberhardt, 2003)
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Fig. 2.1.3: Analytical solution for identification of sliding vs. toppling (Wyllie & Mah, 2005)

2.2 Kinematic analysis

Kinematic analysis proofs if slope failure is kinematic possible as planar or wedge type
failure. Classical analysis considers weight of the potential failed rock block, friction as
well as cohesion, some tools consider also additional tensile cracks. The analysis can
be performed deterministic (consideration only of individual detected joints, faults etc.)
or in a stochastic manner considering joint sets with certain span in orientation (Monte-
Carlo type of simulation).

The kinematic analysis allows to determine potential failures for single blocks (Fig.
2.2.1). However, this method has certain restrictions: it does not consider the complex
3D stress field in a slope and it does not consider complex failure types. Fig. 2.2.2
shows the result of a wedge failure analysis for a rock slope with three joint sets. The
potential failed rock blocks created by crossing joints assuming a friction angle of 27°
(zero cohesion) for a slope dip of 74° are shown in red using a stereographic projection.

N Plane A

Slope Face

Plane B

Fig. 2.2.1: Principle of kinematic wedge analysis for slopes (Rusydy et al., 2019)
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Fig. 2.2.2: Example of wedge failure analysis with 3 joint sets (Basahel & Mitri, 2017)

2.3 Empirical approaches based on rock mass classification

Based on field observations (case histories) several authors have developed design
charts for slopes on the basis of rock mass classifications. Fig. 2.3.1 shows an example
using the GSI classification system. Based on a modified GSI classification scheme
according to Fig. 2.3.2, Taheri & Tani (2007) propose a slope stability design chart
(Fig. 2.3.4) based on a rating according to Fig. 2.3.3 (SSR = Slope Stability Rating).
Bar & Barton (2017) have analyzed more than 400 case histories using the Q-slope
system (see Fig. 2.3.5) and deduced a design chart like shown in Fig. 4.3.3. Sonmez
& Ulusay (1999) proposed a modified GSI classification scheme for slopes (see Fig.
2.3.2). The most popular rock mass classification for slopes is the so-called ‘Slope
Mass Rating — SMR’ based on the RMR system:

SMR =RMR +(F,-F, -F,) +F, (2.3.1)

where F1 to F4 are specific values characterizing the discontinuities as well as the ex-
cavation method (Romana et al., 2015).

The Q-slope value is determined using the following modification of the Q-System:

Q _RQDJ_r ‘]W,ice
spe 3 J. SRF

slope

(2.3.2)

where Jw,ice and SRFsiope are modified Q-system parameters (see Bar & Barton, 2017).
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Fig. 2.3.1: Wet slope stability design chart; solid symbols indicate unstable slopes (Wattimena, 2013)
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Fig. 2.3.2: Modified GSI classification for rock slope analysis (Sonmez & Ulusay, 1999)
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Parameter Range of values
1 Modified GSI (Refer to Fig. 1)
Rating 0- 100
3 Uniaxial compressive strength (MPa) | 0 -10 10-25 25-50 50-100 100 - 150 150 - 200
Rating 0 7 18 28 37 43
3 Rock type (Refer to Table 2) Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Rating 0 4 9 17 20 25
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4 damp blasting blasting blasting splitting slope
Rating -11 4 0 6 10 24
P Groundwater lev- .10
o | ot —ifiomslopetoe Dry 0-20% |20-40% | 40-60% | 60-80% [80-100%
- Slope height
Rating 0 -1 -3 -6 -14 -18
] E:gl;quake EI;]]’lzomal accelera- 0 0.15¢ 020 025¢g 030¢g 035¢
Rating 0 -11 -15 -19 -22 -26
Group Rock type Name of rocks
- i Clay Shale, Mudstone, Clays-
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1 ’ tone & Marl
Highly weathered, sheared, or
Igneous od rock
altered rocks
2 Metamorphic Schists & Mylonites
Sedimentary Limesmne Shale, DOIpmite.
3 ’ Limestone, Chalk & Siltstone
Metamorphic Slate, Phyllites & Marble
Sedimentary Anhydrite & Gypsum
4 Tuff, Basalt, Breccia, Dacite &
Igneous .
i Rhyolite
Sedimentary Breccia, Greywacke, Sandstone
& Conglomarate
5 Metamorphic Homfels
Teneous Doleritg, Obsidian, Andesite,
- Norite & Agglomerate
6 Igneous Granite, Granodiorite, Diorite &
Gabbro

Fig. 2.3.3: Rating scheme for modified GSI classification scheme (Taheri & Tani, 2007)
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Fig. 2.3.4: Comparison between original and modified slope design charts (Taheri & Tani, 2007)
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Fig. 2.3.5: Q-slope data for 412 case histories: stable vs. unstable slopes (Bar & Barton, 2017)
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Fig. 2.3.6: Q-slope stability chart (Bar & Barton, 2017)

Li et al. (2008) have performed systematic numerical slope stability analysis using the
Hoek-Brown failure criterion (see Fig. 2.3.7). Depending on rock type mi, UCS of intact
rock, slope height and angle as well as specific weight and safety factor F the stability
of a rock slope for different GSl-values can be obtained.
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Fig. 2.3.7: Stability chart for slopes using Hoek-Brown failure criterion (Li et al., 2008)
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Haines & Terbrugge (1991) have set-up an empirical slope design chart which indi-
cates areas where design based on rock mass classification may be sufficient or not
(see Fig. 2.3.8).
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Fig. 2.3.8: Empirical slope design chart (Haines & Terbrugge, 1991)
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2.4 Limit equilibrium methods

Limit equilibrium methods consider force and/or moment equilibrium for a slope. For
the calculation the slope is split into slices or blocks. Considered failure mechanisms
and slip surfaces can be quite different as documented by Tab. 2.4.1.

Slip Failure
LEMs Equilibrium conditions satisfied surface mechanism Application References
OMS/Fellenius Moment equilibrium about the Circular Rotational Mass/Slice Fellenius (1936)
method circle center approach
Simplified Bishop  Vertical force equilibrium and Circular Rotational Mass/Slice Bishop (1955)
method moment equilibrium about the approach
center
Extended Bishop Moment equilibrium about the Circular All Mass/Slice Nonveiller (1965)
method center approach
Lorimer method Vertical force equilibrium and Circular All Slice Fredlund, Krahn, and
moment equilibrium about the approach Pufahl (1981)
center
Simplified Janbu  Vertical and horizontal force General All Mass/Slice Janbu (1954)
method equilibrium and shear interslice shape approach
force is assumed ZERO
Modified Swedish  Vertical and horizontal force General All Slice USACE (2003)
method equilibrium shape approach
USACE's 1970 Vertical and horizontal force General All Slice USACE (2003)
procedure equilibrium and interslice force shape approach
inclination is parallel with ground
Lowe-Karafiath Horizontal and vertical force General All Slice Lowe and Karafiath
method equilibrium and interslice force shape approach (1960)
inclination is equal with slip and
ground surfaces
Sarma method | Vertical and horizontal force General All Slice Sarma (1979)
equilibrium and shear strength on shape approach
the interface between adjacent
slices and
Spencer method Rigorous limiting equilibrium and General All Slice Spencer (1967)
interslice force inclination is shape approach
constant
Morgenstern - Rigorous equilibrium by interslice General All Slice Morgenstern and
Price method force function shape approach Price (1965)
Sarma method I Rigorous equilibrium of extended General All Slice Sarma (1973)
and lll Sarma method | shape approach
Correia method Rigorous equilibrium and shear General All Slice Correia (1988)
interslice force described by shape approach
shapes function and force
dimension
Rigorous Janbu All the force and moment conditions ~ General All Slice Janbu (1954); Janbu,
method are equilibrium shape approach Bjerrum, and
Kjaernsli (1956)
USACE’s 2003 Improvement of USACE’s 1970 General All Slice USACE (2003)
procedure procedure shape approach
Wedge method Fully satisfies the vertical and General Wedge Zone Abramson et al.
horizontal force equilibrium shape approach (2001)
Infinite slope Horizontal and vertical force Planar Plane Critical circle  USACE (2003)
method equilibrium
Planar failure Horizontal and vertical force Planar Plane Geometry Hoek and Bray (1981)
analysis equilibrium controlled
Wedge failure Horizontal and vertical force Wedge Wedge Geometry Brady and Brown
analysis equilibrium controlled (2005)
Circular failure Horizontal and vertical force Circular Rotational Mass/Slice Wyllie and Mah
analysis equilibrium approach (2004)
Toppling failure Vertical and horizontal force Rotation  Toppling Geometry Freitas and Watters
analysis equilibrium and moment controlled (1973)
equilibrium
Block theory Geometrical equilibrium and force/  General All Geometry Goodman and Shi
moment vectors equilibrium shape controlled (1985)

Fig. 2.4.1: Overview about limit equilibrium methods for slope stability analysis (Azarafza et al., 2021)
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2.5 Numerical simulations

Numerical stability calculations for slopes can be performed in three different ways:

» via classical continuum based approaches (mainly FEM or FDM) using rock
mass parameters, which may include the consideration of smeared discontinu-
ities

= via discrete element methods (mainly DEM or DDA) considering several or
many discrete discontinuities (joints, interfaces)

» via particle based methods considering different planes of weakness

Numerical simulations are the most complex and most realistic approaches to deter-
mine the slope stability. However, the more realistic the model the more information
and data are required. The following figures illustrate exemplary the power of numerical
simulation techniques to simulate failure pattern of rock slopes.

Fig. 2.5.1 illustrates a typical combined tensile-shear failure of a rock slope via isolines
of accumulated shear strain (continuum approach). Fig. 2.5.2 illustrates a plain failure
mode along predefined planes of weakness using a discontinuum approach (DEM).

Fig. 2.5.1: Combined tensile-shear failure of a rock slope (Lorig & Varona, 2005)

1N,

SN\

Fig. 2.5.2: Plane failure mode along predefined planes of weakness (Lorig & Varona, 2005)
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Fig. 2.5.3 shows two different failure modes: (a) combined failure through rock matrix
and along predefined planes of weakness, (b) forward toppling of block structure.

Fig. 2.5.3: Slope failure modes indicated by isolines of horizontal and vertical displacement, respec-
tively (Lorig & Varona, 2005)
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Fig. 2.5.4 shows the simulation of a rock slope failure by combining a continuum me-
chanical approach (FEM) and a discontinuum mechanical approach (DDA).

rotation

rotation

Fig. 2.5.4: Sequence of complex slope failure process and mass movement (Tan et al., 2017)
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Fig. 2.5.5 shows a 3-dimensional model of a sandstone massive. By applying the
shear- and tensile strength reduction method, factor-of-safety (FOS) values were ob-
tained and potential areas of failure were detected. Different situations (ongoing long-
term weathering as well as frost and thaw cycles) were also included in the numerical
simulations.
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Fig. 2.5.5: Sandstone massive and corresponding numerical models indicating potential areas of fail-
ure by large displacements (Herbst & Konietzky, 2017)
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