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1 Introduction at the atomic level 
Two neighboring atoms are in a position of rest, if they are at the energy-related lowest 
level, which means, that attractive and repulsive forces are in equilibrium. 
 
The atomic binding energy E can be described as follows (see Fig. 1.1): 

x

E F x
0

d
∞

= ⋅∫     (1.1) 

 
In a simplified manner, the force history can be described by a sinus function according 
x to: 
 

sinc
xF F π

λ
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   (1.2) 

 
In good approximation Eq. 1.2 can be linearized:  
 

c
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λ

≈ ⋅    (1.3) 

 
Under the assumption of a linear force displacement relation the stiffness K can be 
introduced: 
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Fig. 1.1: Energy-related (above) and force-related (below) relationship between neighbouring atoms 
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c
xF F K x
λ

≈ ⋅ = ⋅    (1.4) 

Re-arrangement of Eq. 1.4 leads to the definition of stiffness K: 
 

[ ]         N mcFK K
λ

≈ =    (1.5) 

 
If one relates force and stiffness to the basic length and basic area (multiplication 
with x0 and division by basic area) Eq. 1.5 leads to a Hook’s relation for the tensile 
strength σc: 
 

0c xE σ
λ
⋅

≈     (1.6) 

 
Under the assumption that 0x λ≈  Eq. 1.6 yields: 
 

c Eσ ≈    (1.7) 
 
According to Eq. 1.7, the tensile strength of rocks (and solids in general) should have 
the same order of magnitude as the corresponding Young’s moduls. This is in contrast 
to the practical experience: Young’s moduls of rocks are in the order of several 10 GPa, 
whereas the tensile strength has only values of a few MPa. This discrepancy (factor of 
about 1000) can be explained by the existence of defects (pores, micro cracks, flaws 
etc.) at the micro and meso scale. 
 
The relations shown in Fig. 1.1 can also be interpreted in terms of energy by the so-
called specific surface energy γ , which is equal to the one half of the fracture energy, 
because two new surfaces are created during the fracturing process. If we relate the 
force F to the corresponding stress σ an expression for γ  can be obtained: 
 

( ) [ ] 2
0 0

2 Nm2 d sin d             
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If Equation 1.8 is inserted into Equation 1.7 one obtains: 
 

E λγ
π
⋅

=    (1.9) 

 
Further rearrangement of Eq. 1.8 lead to the following expression: 
 

c
γ πσ

λ
⋅

=            (1.10) 

 
To handle the phenomenon of reduced strength and to consider the effect of defects 
the theoretical concepts of fracture and damage mechanics were developed.  
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2 Basic terms of fracture mechanics 
The classical fracture mechanical concept is mainly based on stress concentrations at 
the crack tips and can be deduced from the “Inglis”-solution under the assumption, that 
one half axis of the ellipsoidal opening (e.g. a micropore) approaches zero.  
 
The extremum of the tangential stress at the boundary at β = 0° is given by the fol-
lowing formulae (Fig. 2.1): 
 

( )1 2
witht

f bp f
f a

λ
σ

− +
= − =         (2.1) 

 
For b → 0 arises a flat ellipse, which degenerates towards a horizontal fracture: 
 

( )0      0      0tb f σ β→ ⇒ → ⇒ = → ∞   (2.2) 
 
According to Eq. 2.1 and 2.2, the tangential stress immediately at the crack tip is virtu-
ally infinite. The exact representation of the stress field around the crack tip is given by 
the „Griffith“ crack model according to Fig. 2.2. 
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Fig. 2.1: Modell of an elliptical pore under anisotropic tension 

 

 
Fig. 2.2: Griffith model 
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The „Griffith“ crack model considers a plane crack of length 2a inside an infinite plate. 
The stress field can be obtained by the so-called complex stress functions of “Ko-
losov”. The stress field along the horizontal line y=0 ahead of the crack tip is given 
by the following expressions, which are graphically shown in Fig. 2.3: 
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Fig. 2.3: Scaled stresses along fracture plane (y = 0) 
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For the area very close to the crack tip ( 1r
a

<< ) the following approximation is valid: 

In Cartesian coordinates: 
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In cylindrical coordinates: 
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The stress field at the crack tip is illustrated in Fig. 2.4. From Eq. 2.5 and 2.6, respec-
tively, it becomes obvious, that the term a⋅σ  is a characteristicc value to describe 
the intensity of the stress state at the crack tip, i. e. 
 

crack_tip far_field~σ σ           (2.7) 

crack_tip ~ aσ            (2.8) 
 

 
Fig. 2.4: Stress field at the crack tip in Mode I (pure tensile crack) 
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The important fracture mechanical parameter K (stress intensity factor) can be de-
duced also from Eq. 2.5 and 2.6: 
 

[ ]          Pa mI IK a Kσ π= ⋅ ⋅ = ⋅        (2.9) 
 
KI characterizes the stress concentration at the crack tip for Mode I (tensile crack). In 
general the following is valid: 
 
K a Yσ π= ⋅ ⋅ ⋅           (2.10) 

 
Y is a dimensionless factor, which considers geometry and mode of loading. Exem-
plary, Fig. 2.5 shows a specific crack constellation and Eq. 2.11 shows the expression 
for the corresponding stress intensity factor. In case of infinite length of sample W, Eq. 
2.12 can be used. Several text books provide solutions for Y for quite different crack 
and loading configurations (e.g. Anderson 1995, Gross & Seelig 2001, Gdoutos 2005). 
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     ≈ − + − +     
     

   (2.11) 

 
1,122       for      IK a wσ π≈ ⋅ ⋅ ⋅ → ∞        (2.12) 

 

 
Fig. 2.5: Plane under unixial σ tension with initial crack of length a at the left hand boundary  
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Eq. 2.5 can be re-written using the stress intensity factor: 
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Beside tensile fracture (Mode I) two other basic fracture types can be distinguished 
(Fig. 2.6): 
- Mode II:  shear fracture (in-plane shear) 
- Mode III: torsion fracture (out-of-plane shear) 
Due to often 3-dimensional loading and inclined orientation of cracks in respect to load-
ing directions mixed-mode fracturing takes place. The stress field at the crack tip for 
such constellations can be given by the following formulae: 
 

( ) ( ) ( )1
2

I II III
ij I ij II ij III ijK F K F K F

r
σ ϕ ϕ ϕ

π
 = + +  ,     (2.14) 

 
where Fij(ϕ) contains angular functions valid for the different fracture modes. 
 
Alternative to the stress field description the so-called energy release rate G can be 
used. G gives the energy loss per crack propagation (Nm/m2 = N/m). For linear elas-
tic material in 2D the following expressions are valid: 
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Fig. 2.6: Fracture mode I (opening mode) , II (sliding mode) and III (tearing mode) 
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The above outlined theory is restricted to linear elastic material behaviour and called 
LEFM (Linear Elastic Fracture Mechanics). A more general parameter is the so-called 
J-Integral, which is also valid for any kind of non-linear behavior. For linear elastic be-
havior (LEFM) and plane strain condition the following yields: 
 

( ) ( )
2

2 2 2
1 1

2I II IIIJ K K K
E G
ν−

= + +         (2.16) 

 
The J-lntegral corresponds to G and within the framework of LEFM the following ex-
pression is valid: 
 

dEG J
da

= − = ,   (2.17) 

where: E = potential energy, J and G, respectively, can be determined by tests under 
constant load (Fig. 2.7) or fixed displacement (Fig. 2.8). 
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Fig. 2.7: J-Integral determination under constant load (analog to creep test) 
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Fig. 2.8: J-Integral determination under fixed displacement (analog to relaxation test) 
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Fig. 2.9: Process (plastic) zone close to crack tip 

The shaded area (see Fig. 2.7 and 2.8) corresponds to the change in potential energy, 
i.e: 
 

d dE J a− = ⋅    (2.18) 
 
For the test under constant load the following is valid: 
 

0

0

d d
d

FE uJ F
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∂ = − = −  ∂ ∫    (2.19) 

 
For the test under fixed displacement the following holds: 

0

0

d d
d

uE FJ u
a a

∂ = − = −  ∂ ∫    (2.20) 

 
The concept of LEFM is valid as long as the process zone (plastified zone at the crack 
tip) is small compared to the K determined field (e.g. Kuna 2008). If K, G or J reach 
critical values, critical (fast) fracture propagation starts. KIc, KIIc and KIIIc are also called 
fracture toughness. These parameters are material constants and can be determined 
by special rock mechanical lab tests (e.g. ISRM 2014). Another important parameter 
in the framework of fracture mechanics is COD (Crack Opening Displacement ∆). An-
alog to the critical values of K, G and J it is possible for COD to define a critical value. 
Exemplary, the well-known “Irwin”-model in plane strain should be considered: 
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If we furthermore consider, that: 
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we get from Eq. 2.21 and 2.22: 
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These equations demonstrate the equivalence of the parameters G, K and COD. For 
rocks the following value ranges are valid: 
 

0.5 3 MPa m

2 15 MPa m

2 3
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3 Subcritical crack growth and lifetime 
In respect to crack growth processes several phases can be distinguished (Fig. 3.1): 
 in respect to fracture propagation velocity: quasi static vs. dynamic 
 in respect to fracture toughness: stable vs. unstable 

 
Subcritical crack growth is characterised by very low crack propagation velocity v, 
which follows the relation: 
 

~ nv K            (3.1) 
 
n ≈ 2 … 50 -stress-corrosion-index 
 
The subcritical crack growth can well be described by the so-called „Charles“-equa-
tion: 
 

( / )
0

H RT nv v e K−= ⋅ ⋅           (3.2) 
where: 
v0 material constant 
T absolute temperature 
R Boltzmann gas constant 
H activation energy 
 

 
Fig. 3.1: Critical vs. subcritical crack growth 
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Fig. 3.2: Crack propagation velocity vs. stress intensity factor 

The logarithm of the „Charles“-equation leads to the following expression: 
 

( )( / )
0log log log e H RTv n K v −= ⋅ +         (3.3) 

 
Eq. 3.3 delivers a line in a double-logarithmic diagram, where the stress-corrosion-
index n represents the inclination (Fig. 3.2). 
 
The concept of subcritical crack growth can be used to predict lifetime and to simu-
late/explain the development of damage pattern for rock structures under load, as out-
lined by Konietzky et al. (2009) and further developed by Li & Konietzky  
(2014a, b) and Chen & Konietzky (2014). The basic idea within this concept is the 
existence, growth and coalescence of micro cracks, which leads to the development 
of macroscopic fractures and finally failure. 
 

4 Apparent fracture toughness 

According to the classical fracture mechanical concept (LEFM, see Fig. 2.3) stress at 
crack tips approaches infinity. On the other hand, according to Eq. 2.10 material 
strength would approach infinity if it contains no or only infinite small cracks. In practical 
engineering we should consider different defect types like illustrated in Fig. 4.1. 
 

 
Fig. 4.1: Classification of defect types (Urrutia, 2020) 
  
In a strict sense the classical fracture mechanical concept considers only the situations 
illustrated in Fig. 4.1a,b. However, in practice notch-type defects with finite radius may 
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dominate and the corresponding apparent fracture toughness KIN is – depend on notch 
radius – significantly higher (see Fig. 4.2). 
 

 
Fig. 4.2: Ratio of apparent to classical fracture toughness for different materials and scaled notch radius 
(Berto & Lazzarin, 2014) 
 
In contrast to Fig. 2.3, the stress in front of the notch shows a behavior like shown in 
Fig. 4.3. The stress concentration at a notch tip can be separated into 3 zones (Fig. 
4.3): 
 

(I) Zone with nearly constant stress very close to the notch tip (plastified or dam-
aged zone) 

(II) Transition zone 
(III) Linear relation between log(stress) vs. log(distance) like given by Eq. 4.1 

  

( )2yy

K

r
ρ

ασ
π

=
⋅ ⋅

            (4.1) 

 
where: Kρ = Notch stress intensity factor (NSIF) , r = distance in front of the notch, α = 
material constant for given notch radius (α is in the order of 0.5). Please note, that Kρ 
varies with notch radius ρ. 
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Fig. 4.3: Stress distribution at a notch tip (r = distance from notch tip, σyy = stress normal to notch length 
axis; Justo, 2020) 
 
One can define a so-called ‘critical distance’ L according to the following formula (se 
also Fig. 4.3): 
 

2

0

1 ICKL
π σ

 
=  

 
            (4.2) 

 
where σ0 is the global material strength. L can be considered as an internal material 
length parameter. There are different methods to determine L. The most popular are: 
 
 point method (PM) 
 line method (LM) 
 areal method (AM) 

 
The theory of critical distances (TCD) is based on the assumption, that the inherent 
strength σ0 is equal to the maximum principal stress calculated either at a certain dis-
tance from the notch tip (PM), averaged over a certain distance (LM) or averaged over 
a certain volume (AM). All of these methods give similar values for L.  

 
 
Fig. 4.3: Illustration of critical distance L for notch according to the point method (Justo, 2020) 
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The apparent fracture toughness based on L determined according to the PM is written 
as: 
 

3/2

1

21
IN IC

LK K

L

ρ

ρ

 + 
 =

+
           (4.3) 

 
The apparent fracture toughness based on L determined according to the LM is written 
as: 
 

1
4IN ICK K

L
ρ

= +            (4.4) 

 
For ρ = 0, both expressions (4.3 and 4.4) describe the sharp crack (KIC = KIN). 
 
Fig. 4.4 illustrates the failure envelopes based on LEFM and TCD in comparison with 
the inherent strength. It documents, that via TCD the defect size dependence of 
strength can be well described. 
 

 
Fig. 4.4: Typical experimental results and predictions according to LEFM and TCD (Taylor, 2004) 
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Fig. 4.5 shows the model set-up for simulating 4-point-bending tests with variable notch 
radius. The simulations were performed with continuum and discontinuum codes. Like 
shown in Fig. 4.6, the horizontal stresses along the vertical symmetry line across the 
notch show a nearly linear trend for larger notch radius (see ρ = 15 mm in Fig. 4.6) 
compared to smaller notch radius (see ρ = 3 mm in Fig. 4.6). This indicates that larger 
notch radius are similar to a simple cross section reduction, whereas smaller notch         
radii lead to a non-linear increase in stress close to the notch tip.  
 
 

 
 
Fig. 4.5: Set-up of numerical models for simulation of 4-point-bending tests (Justo & Konietzky, 2020) 
 
 

 

Fig. 4.6:  Horizontal stresses along the vertical symmetry line across a notch according to Fig. 4.5 
(Justo & Konietzky, 2020) 

Justo et al. (2020) have also investigated the influence of the grain size via lab testing 
and numerical simulations using the discrete element method (see Fig. 4.7 and Fig 
4.5). Fig. 4.8 confirms again the influence of the notch radius on the apparent fracture 
toughness, but indicates also the influence of the grain size. Fig. 4.9 documents the 
dependence of critical distance CT on the grain size which corresponds to Voronoi 
edge length. 
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Fig. 4.7:  Simulation of varying grain size using Voronoi structure, see also Fig. 4.5 (Justo et al., 2020)  

 

Fig. 4.8:  Apparent fracture toughness vs. notch radius for models with different grain size, see also 
Fig. 4.5 and Fig. 4.7 (Justo et al., 2020) 

 

Fig. 4.9:  Critical distance versus Voronoi edge length representing the grain size, see also Fig. 4.5 
and Fig. 4.7 (Justo et al., 2020) 
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5 Fatigue due to cyclic loading 
Except static loading also cyclic loading (load reversal) is an important issue in geo-
technical engineering, e.g. for bridge crossing, industrial or traffic vibrations, seismic 
loading, explosions or blasting. The experience shows that objects exposed to the 
same load level have longer life time under static loading compared to cyclic loading. 
Also, it becomes apparent, that rocks under static load level may be stable, while at 
the same cyclic load level failure is observed. The following different factors have in-
fluence on the cyclic fatigue behavior of rocks (Cerfontaine & Collin, 2018): 
 frequency 
 maximum stress 
 stress amplitude 
 confinement 
 degree of saturation 
 anisotropy 
 waveform 
 sample size  

 
Typical lab tests to investigate the cyclic fatigue behavior of rocks are: 
 cyclic uniaxial and triaxial compressive tests 
 cyclic indirect (Brazilian) tensile tests 
 cyclic 3- and 4-point bending tests 

The degree of fatigue is typically characterized by the following damage variables 
(Song et al., 2018; Cerfontaine & Collin, 2018): 
 residual deformation (axial or volumetric) 
 wave velocity 
 deformation modulus 
 AE count or energy 
 dissipated energy / energy ratio 
 permeability 

The most classical and still often used representation of the cyclic fatigue behavior is 
the so-called S-N (Wöhler) curve, which results in a straight line if a semi-logarithmic 
plot is used. The S-N curve relates the number of cycles N up to failure to the normal-
ized ratio of maximum cyclic stress σmax to monotonic strength σmon (A and B are ma-
terial parameters):  
 

A N Bmax
10

min

log= ⋅ −σ
σ

   (5.1) 

 
For sinusoidal excitation the parameters shown in Fig. 5.1 are given, where N is de-
fined as the number of cycles and K as the stress intensity factor. According to Fig. 5.1 
the following definitions are valid: 
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max min

max min

min

max

2m

K K K
K KK

KR
K

∆ = −

+
=

=

          (5.2) 

 
The increment in fracture length per loading cycle (da/dN) can be represented in a 
logarithmic plot (Fig. 5.2), where ∆Kth represents the stress intensity factor magnitude, 
below which no crack propagation occurs and ∆Kc represents the critical stress inten-
sity factor magnitude, where critical crack propagation starts. 
 

 

K

Km
Kmin

Kmax

Time
 

Fig. 5.1: Basic fracture mechanical parameters for cyclic loading 

 

I II III

∆Kth ∆Kc
∆K

log(     )da
dN

 
Fig. 5.2: Phases of crack propagation under cycylic loading 

Crack propagation within phase I can be described by the „Donahne” law: 
 

( )d
d

m
th

a K K K
N

∆ ∆= −          (5.3) 

where: ( ) , 0Δ 1 Δth thK R Kγ
= −         (5.4) 
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∆Kth 0 is the threshold for R = 0 and γ is a material parameter. 
 
Crack propagation within phase II is given by the „Paris-Erdogan“-relation: 
 

( )d Δ
d

ma C K
N

=           (5.5) 

 
m and C are material constants, where m is often set to 4.  
 
Crack propagation within phase III can be described by the “Forman” law: 
 

( )
( )

Δd
d 1 Δ

n

c

C Ka
N R K K

⋅
=

− −
         (5.6) 

 
C and n are material constants. 
 
An expression, which covers all three phases is the so-called „Erdogan and Ratwani” 
law: 
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1 Δ Δd
d 1 Δ

m n
th
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C K Ka
N K K

β
β

+ ⋅ −
=
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        (5.7) 

where max min

max min

K K
K K

β
+

=
−

  and c, m, n are material constants.   (5.8) 

6 Introduction into Continuum Damage Mechanics (CDM) 
Instead of considering the stress-strain or force-displacement relation of crack or frac-
tures in detail, CDM considers the overall damage in terms of smeared parameters 
and can handle infinite number of defects. Within the CDM concept, damage is ex-
pressed by any kind of defects, like pores, cracks, planes of weakness etc. and is given 
by the damage variable D, which can be defined in different ways depending on the 
applied approach and problem. Eq. 6.1 gives a volumetric definition, whereas Eq. 6.2 
gives an area definition for a fictitious cross section through the body. 
 

Pore

Total

VD
V

=   V = Volume        (6.1) 

 
Pore P

Total T

A AD
A A

= =  A = Cross sectional area      (6.2) 

 
For the damage variable holds 0 ≤ D ≤ 1, i.e. D = 0 indicates no damage at all and  
D = 1 means 100 % damaged. The damage variable D can be a scalar (isotropic dam-
age) or a tensor (anisotropic damage): 
 

Isotropic damage:  P

G

AD
A

=        (6.3) 
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Anisotropic damage: ( ) d dij ij jD n A n Aδ − = ⋅       (6.4) 
 
By means of the damage variable D effective stresses can be determined. For isotropic 
damage under uniaxial load the following can be deduced (AG = total area, AP = pore 
area): 
 

1
eff

D
σσ =
−

  because 
G P

F F
A A A

σ = =
−

       (6.5) 

 
 

n 

dA

 

n 

dA

~

 
Fig. 6.1: Illustration for definition of anisotropic damage (left: reference configuration, right: equivalent 
(deformation-equivalent) continuum configuration.The operator (δij – Dij) transforms the reference 
configuration into an equivalent continuum mechanical configuration without defects, but with smaller 
area and modified normal vektor n. 
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Isotropic damage under polyaxial load is defined by: 
 

1
ijeff

ij D
σ

σ =
−

           (6.7) 

 
Damage can also be interpreted by reduced stiffness, e.g. reduced Young’s modulus. 
If one assumes identical macroscopic stresses and identical macroscopic deformation, 
the following equations can be deduced (E  = Young’s modulus of damaged material, 
E = Young’s modulus of undamaged material): 
 

( )G G P

F F
E E A E A A E
σ σε = = = =

⋅ − ⋅
       (6.8) 
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This implies that: 
 

( )

( )1 or 1

G G p

G p

G

A E A A E

A A
E E

A

EE D E D
E

⋅ = − ⋅

−
= ⋅

= − ⋅ = −

     (6.9) 

As a consequence the elastic law for damaged material can be deduced: 
 

( )1E Dσ ε= − ⋅           (6.10) 

 

 

 

σ

ε

D = 0

0

0 < D < 1

D = 1
 

 

 

D

σ = const. 

ε

1

0  
Fig. 6.2: Illustration of stress-strain relation of damaged and undamaged material (left) and damage 
development versus deformation under constant load (right). 

Damage can be detected by measuring changes in ultrasonic wave speed, for in-
stance by measuring longitudinal wave speed:  
 

( ) ( )

( ) ( )
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2

2 2

1 1 2
11 1 1

1 1 2
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P P
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VED
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ρ ν ν
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 ⋅ + −
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 ⋅ + − ⋅
 − 

     (6.11) 

 
Because changes in density ρ as a general rule a negligible small, Eq. 6.11 can be 
simplified as follows: 
 

2

21 P

P

VD
V

≈ −            (6.12) 

 
Corresponding graphical presentations of the damage process in general are shown 
in Fig. 6.2 for a rock specimen under compressive load. 
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Three thresholds have to be considered: 
 

1.) no damage: 

for *:   0Dε ε< = , E E
σ σ

=
=

                  (6.13) 

 
2.)  Start of microcrack growth, i. e. onset of damage 

for *:    increasingDε ε> , 
σ≠σ

≠ EE        (6.14) 

3.) Start of macroscopic crack growth, i. e. macroscopic fracture mechanics 
for * *:   cD Dε ε> =          (6.15) 

 
Damage in terms of microscopic crack growth takes place for: 
 
ε* < ε < ε** or σ* < σ < σ**        (6.16) 
 
Damage in terms of CDM leads to the following practical consequences: 

• Reduction of Young’s modulus 
• Reduction of elastic wave velocities 
• Reduction of density 
• Increase of creep rate 
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7 Stochastic view (Weibull-Model) 
The probability of failure according to the “Weibull” concept (e.g. Liebowitz 1968) is 
based on the following assumptions: 
 
- statistical homogenous distribution of defects 
- „weakest link theory“, i. e. failure of the whole considered structure, if the weakest 

single defect fails 
- no interaction between defects 
 
The probability of failure is given by: 
 

( )
0 0

*1 exp
m

f
Vp F
V

σσ
σ

  
 = = − −  
   

       (7.1) 

where: 
 V0 = elementary volume 
 V = considered volume 
 σ0  = average strength (stress value at which 63,2 % of all samples fail) 
 m = Weibull parameter (~ 1 – 40) is a measure for the variance of the strength  
   parameter (the bigger m, the closer the strength values lie together) 
  σ* = effective stress 
 
with ( )* 1 Dσ σ= −  the following expression can be deduced: 

( )
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1
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V

σ
σ

  −
 = − −  
   

        (7.2) 
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Fig. 7.1: Principal history for damage and wave speed with ongoing deformation for a rock specimen 
with softening under compressive load 



Introduction into fracture and damage mechanics for rock mechanical applications 
Only for private and internal use!  Updated: 4 January 2021 
 
 

Page 25 of 27 

 

m m

σ0

1
Pf

 
Fig. 7.2: Probability of failure as a function of stress for different Weibull parameters 

The Weibull distribution can be used to manifest the scale effect, as outlined below. 
The 2-parametric Weibull distribution can be used to describe the distribution of defects 
(pores, cracks, flaws, notches etc.): 
 

( ) e

b

c

a
aF a

 
−  

 =             (7.3) 
 
where: 

ac = characteristic defect size (e.g. crack length, pore radius) 
b = variance parameter 
F(a) = probability, that within the considered volume V0 a defect ≤ a exist. 

 
Within a n-time bigger volume V: 
 

0V n V= ⋅   (7.4) 
 
due to the series connection of failure elements the following holds: 
 

( ) ( ){ }
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c

an n
a
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 

−   
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If one inserts Eq. 7.4 into Eq. 7.5 one obtains: 
 

( ) 0e

b

c

V a
V a

vF a
 

− ⋅   
 =             (7.6) 

 
Eq. 7.6 can be interpreted in such a way, that the characteristic defect size ac increases 
with increasing volume. Under the assumption that local stress concentrations (notch 
stresses, stresses at crack tips etc.) are crucial for failure, one can write: 
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1~
a

σ            (7.7) 

 
and can insert expression 7.7 into Eq. 7.6: 
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For identical failure probabilities holds: 
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and after rearrangement: 
 

1

0
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          (7.10) 

 
It can be concluded from Eq. 7.10, that the characteristic size of defects increases with 
increasing volume (V increases → ac increases). Analog to Eq. 7.8 an expression 
based on stresses can be formulated: 
 

K.const
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b

00
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         (7.11) 

 
Eq. 7.11 can be interpreted in such a way, that characteristic local stress concentra-
tions increase with increasing volume and therefore a lower stress level will lead to 
failure. 
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